Quasicrystals pp 379-392 | Cite as

Electron Transport in a Magnetic Field: A Landauer-Formula Approach

  • Gerald Kasner
  • Holger Wegmann
  • Harald Böttger
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 55)


The density of states as a function of a magnetic field and the magnetoconductance of two- and three-dimensional quasicrystalline model systems are calculated in a simple tight-binding description. The zero-field spectra are known to show a very complicated spiky structure with many small gaps. A magnetic field leads to a more uniform distribution of the states. Correspondingly, the energy regions that show finite values for the magnetoconductance as a function of the Fermi energy become larger with a growing field. The investigation of the high-field behavior uncovers an interesting structure of the spectra that is quasiperiodic with the field. This quasiperiod can be explained as a simple interference of periods in the incommensurate ratio of the areas perpendicular to the flux contained in the cluster.


Magnetic Field Fermi Energy Lower Eigenvalue High Eigenvalue Quasiperiodic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arai M., Tokihiro T., Fujiwara T. (1987): J. Phys. Soc. Jpn. 56, 1642ADSCrossRefGoogle Scholar
  2. 2.
    Behrooz A., Burns M.J., Deckman H., Levine D., Whitehead B., Chaikin P.M. (1986) : Phys. Rev. Lett. 57, 386ADSCrossRefGoogle Scholar
  3. 3.
    Böttger H., Bryksin V.V. (1985): Hopping Conduction in Solids, Akademie Verlag, BerlinGoogle Scholar
  4. 4.
    de Bruijn N.G. (1981): Mathematics A 84, 39Google Scholar
  5. 5.
    Choy T.C. (1987) : Phys. Rev. B 35, 1456ADSCrossRefGoogle Scholar
  6. 6.
    Danzer L. (1989) : Discr. Math. 76, 1MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    DiVincenco D.P., Steinhardt P.J. (1991) : Quasicrystals: The State of the Art, World Scientific, SingaporeGoogle Scholar
  8. 8.
    Fujiwara T.: In [13], p. 294Google Scholar
  9. 9.
    Hatakeyama T., Kamimura H. (1989): J. Phys. Soc. Jpn. 58, 260MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Hofstadter D.R. (1976): Phys. Rev. B 14, 2239ADSCrossRefGoogle Scholar
  11. 11.
    Jian Y. (1992) : Z. Phys. B 88, 141ADSCrossRefGoogle Scholar
  12. 12.
    Kasner G., Schwabe H., Böttger H. (1995): Phys. Rev. B 51, 10454ADSCrossRefGoogle Scholar
  13. 13.
    Kuo K.H., Ninomiya T. (1991): Quasicrystals, World Scientific, SingaporeMATHGoogle Scholar
  14. 14.
    Lindqvist P., Lanco P., Berger C., Jansen A.G.M., Cyrot-Lackmann F. (1995): Phys. Rev B 51, 4796ADSCrossRefGoogle Scholar
  15. 15.
    Odagaki T. (1986) : Solid State Commun. 60, 693ADSCrossRefGoogle Scholar
  16. 16.
    Rieth T., Schreiber M. (1995): Phys. Rev. B 51, 15827ADSCrossRefGoogle Scholar
  17. 17.
    Tsunetsugu H., Fujiwara T., Ueda K., Tokihiro T. (1991): Phys. Rev. B 43, 8879ADSCrossRefGoogle Scholar
  18. 18.
    Tsunetsugu H., Ueda K. (1991) : Phys. Rev. B 43, 8892ADSCrossRefGoogle Scholar
  19. 19.
    Ueda K., Tsunetsugu H. (1987): Phys. Rev. Lett. 58, 1272ADSCrossRefGoogle Scholar
  20. 20.
    Wang X.R. (1996) : Phys. Rev. B 53, 12035ADSCrossRefGoogle Scholar
  21. 21.
    Yamamoto S., Fujiwara T. (1995): Phys. Rev. B 51, 8841ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Gerald Kasner
  • Holger Wegmann
  • Harald Böttger

There are no affiliations available

Personalised recommendations