Advertisement

Impact Ionization and Avalanche Breakdown

  • Karlheinz Seeger
Part of the Advanced Texts in Physics book series (ADTP)

Abstract

Some aspects of impact ionization and avalanche breakdown in semiconductors are similar to the corresponding phenomena in gaseous discharges. Semiconductors may serve as model substances for gaseous plasmas since their ionic charges are practically immobile and therefore the interpretation of experimental data is facilitated. Impact ionization has been achieved both in the bulk of homogeneously doped semiconductors at low temperatures and in p-n junctions at room temperature. We will discuss these cases separately.

Keywords

Drift Velocity Impact Ionization Depletion Region Breakdown Field Auger Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 10.1
    G. Lautz, Halbleiterprobleme VI, 21 ( Vieweg, Braunschweig 1961 )Google Scholar
  2. 10.2
    S.H. Koenig, G.R. Gunther-Mohr, J. Phys. Chem. Solids 2, 268 (1957)CrossRefGoogle Scholar
  3. 10.3
    N. Sciar, E. Burstein, J. Phys. Chem. Solids 2, 1 (1967)Google Scholar
  4. 10.4
    K. Baumann, M. Kriechbaum, H. Kahlert, J. Phys. Chem. Solids 31, 1163 (1970)CrossRefGoogle Scholar
  5. 10.5
    S.H. Koenig, in Proc. Int’l Conf. Solid State Physics, Brussels 1958, ed. by M. Desirant ( Academic, London 1960 ) p. 422Google Scholar
  6. 10.6
    M. Lax, J. Phys. Chem. Solids 8, 66 (1959)CrossRefGoogle Scholar
  7. 10.7
    G. Bauer, F. Kuchar, Phys. Status Solidi (a) 13, 169 (1972)CrossRefGoogle Scholar
  8. 10.8
    W.P. Dumke, Phys. Rev. 167, 783 (1968)CrossRefGoogle Scholar
  9. 10.9
    R.C. Curby, D.K. Ferry, Phys. Status Solidi (a) 15, 319 (1973)CrossRefGoogle Scholar
  10. 10.10
    G. Nimtz, in Proc. Int’l. Conf. Phys. Semicond. Cambridge MA 1970, ed. by S.P. Keller, J.C. Hensel, F.Stern ( USAEC, Oak Ridge, TN 1970 ) p. 396Google Scholar
  11. 10.11
    A.L. McWhorter, R.H. Rediker, Proc. Int’l Conf. Phys. Semicond., Prague 1960 (Czech. Acad. Sciences, Prague 1960 ) p. 134Google Scholar
  12. 10.12
    B.K. Ridley, Proc. Phys. Soc., London 81, 996 (1963)Google Scholar
  13. 10.13
    A.M. Barnett, IBM J. Res. Dev. 13, 522 (1969)Google Scholar
  14. 10.14
    R.F. Kazarinov, V.G. Skobov, Zh. Eksp. Teor. Fiz. 1047 (1962) [Engl. transi., Soy. Phys. - JETP 15, 726 (1962)]Google Scholar
  15. 10.15
    B. Ancker-Johnson. 1, ed. by R.K. Willardson, A.C. Beer ( Academic, New York 1966 )Google Scholar
  16. 10.16
    A.G. Chynoweth, K.G. McKay, Phys. Rev. 108, 29 (1957)CrossRefGoogle Scholar
  17. 10.17
    A.G. Chynoweth, Semiconductors and Semimetals Vol. 4, ed. by R.K. Willardson, A.C. Beer ( Academic, New York 1968 ) p. 263CrossRefGoogle Scholar
  18. 10.18
    C.A. Lee, R.A. Logan, R.L. Batdorf, J.J. Kleimack, W. Wiegman, Phys. Rev. 134, A761 (1964)CrossRefGoogle Scholar
  19. 10.19
    S.M. Sze, Physics of Semiconductor Devices, ( Wiley, New York 1969 ) p. 60Google Scholar
  20. 10.20
    G.A. Baraff, Phys. Rev. 128, 2507 (1962); ibid, 133, A26 (1964)Google Scholar
  21. 10.21
    J.E. Carroll, Hot Electron Microwave Generators ( Arnold, London 1970 )Google Scholar
  22. 10.22
    A.F. Gibson, J.W. Granville, E.G.S. Paige, J. Phys. Chem. Solids 19, 198 (1961)CrossRefGoogle Scholar
  23. 10.23
    A.E. Michel, M.I. Nathan, J.C. Marinace, J. Appl. Phys. 35, 3543 (1964)CrossRefGoogle Scholar
  24. 10.24
    W. Shockley, Bell Syst. Tech. J. 33, 799 (1954)Google Scholar
  25. 10.25
    W.T. Read, Bell. Syst. Tech. J. 37, 401 (1958)Google Scholar
  26. 10.26
    H. Hartnagel, Semiconductor Plasma Instabilities ( Heinemann, London 1969 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Karlheinz Seeger
    • 1
    • 2
  1. 1.ViennaAustria
  2. 2.Institut für MaterialphysikUniversitätViennaAustria

Personalised recommendations