Skip to main content

Physical Systems

  • Chapter
  • 1094 Accesses

Abstract

Matter around us and within us consists of electrons and atomic nuclei, which are governed by the laws of quantum mechanics Relativistic effects arise only in the fine details (cf. III, § 1), so the forces of primary relevance are electrostatic and, for cosmic bodies, gravistatic (nonrelativistic). Moreover, the precise nature of the atomic nuclei is of little consequence on the macroscopic scale, so they can be considered as point charges. In order to understand the gross features of matter we shall study a Hamiltonian

$${H_{{\text{mat}}}} = \sum\limits_{i = 1}^M {\frac{{|{p_i}{|^2}}}{{2{m_i}}} + \sum\limits_{i >j} {\frac{{({e_i}{e_j} - k{m_i}{m_j})}}{{|{x_i} - {x_j}|}}} } $$
(4.1)

for ordinary matter. The first important issue to confront is that of why macroscopic bodies behave classically; in what sense is the thermodynamic limit N → ∞ equivalent to the classical limit h →* 0? There are a variety of ways to pass to the limit N → ∞. In this section we begin by letting the nuclear charge Z and the nuclear masses both tend to infinity, while continuing to neglect gravity. This will permit a rather explicit mathematical treatment, as the action is determined by an average field, and the single-particle model becomes exact. The same will be true in § 4.2 when we deal with cosmic bodies, for which gravitation predominates. However, macroscopic bodies on the scale of humans are far from these limits: nuclear charges are for the most part small, and yet gravitation is of little importance. In this intermediate range of normal matter it would be too much to hope for an explicit solution. Section 4.3 will discuss this case, but the results will be confined to general existence theorems and rather crude bounds on the values of observables of physical interest.

Among the best examples of large quantum systems are atoms and molecules with highly charged nuclei. Classical features arise in the limit Z → ∞, N → ∞, except that the Fermi statistics continue to have an important effect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.J. Dyson and A. Lenard: Stability of Matter, I. J. Math. Phys. 8, 423–433, 1967; Stability of Matter, II. Ibid. 9, 698–711, 1968.

    MathSciNet  MATH  Google Scholar 

  2. E.H. Lieb: The N5/3 Law for Bosons. Phys.Lett. 70A, 71–73, 1979.

    Article  MathSciNet  Google Scholar 

  3. R.A. Goldwell-Horstall and A.A. Maradulin: Zero-Point Energy of an Electron Lattice. J. Math. Phys. 1, 395–404, 1960.

    Article  ADS  Google Scholar 

  4. J. Dixmier: Les Algèbres d’Opérateurs dans l’Espace Hilbertien. Paris, Gauthier-Villars, 1969.

    Google Scholar 

  5. A. Wehrl: General Properties of Entropy. Rev. Mod. Phys. 50, 221–260, 1978.

    Article  MathSciNet  ADS  Google Scholar 

  6. E.H. Lieb: Convex Trace Functions and the Wigner—Yanase—Dyson Conjecture. Adv. Math. 11, 267–288, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Simon: Trace Ideals and their Applications. London and New York, Cambridge Univ. Press, 1979.

    MATH  Google Scholar 

  8. A. Uhlmann: Relative Entropy and the Wigner—Yanase—Dyson—Lieb Concavity in an Interpolation Theory. Commun. Math. Phys. 40, 147–151, 1975;

    Article  Google Scholar 

  9. A. Uhlmann: Sätze über Dichtematrizen. Wiss. Z. Karl-Marx-Univ. Leipzig 20, 633, 1971;

    MathSciNet  Google Scholar 

  10. A. Uhlmann: The Order Structure of States. In: Proc. Int. Symp. on Selected Topics in Statistical Mechanics. JINR-Publ. D17–11490. Dubna USSR, 1978.

    Google Scholar 

  11. M.B. Ruskai: Inequalities for Traces on von Neumann Algebras. Commun. Math. Phys. 26, 280–289, 1972.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. M. Breitenecker, H.-R. Grümm: Note on Trace Inequalities. Commun. Math. Phys. 26, 276–279, 1972.

    Article  ADS  MATH  Google Scholar 

  13. K. Symanzik: Proof and Refinements of an Inequality of Feynman. J. Math. Phys. 6, 1155–1156, 1965.

    Article  ADS  Google Scholar 

  14. J. Aczel, B. Forte, and C.T. Ng: Why the Shannon and Hartry Entropies are “Natural”. Adv. Appl. Prob. 6, 131–146, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  15. E.H. Lieb and B. Ruskai: Proof of the Strong Subadditivity of Quantum-Mechanical Entropy. J. Math. Phys. 14, 1938–1941, 1973.

    Article  MathSciNet  ADS  Google Scholar 

  16. H. Araki and E.H. Lieb: Entropy Inequalities. Commun. Math. Phys. 18, 160–170, 1970.

    Article  MathSciNet  ADS  Google Scholar 

  17. P.C. Martin and J. Schwinger: Theory of Many-Particle Systems, I. Phys. Rev. 115, 1342–1373, 1959.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. R. Peierls: Surprises in Theoretical Physics. Princeton, Princeton Univ. Press, 1976.

    Google Scholar 

  19. E.H. Lieb and W. Thirring: Inequalities for the Moments of the Eigenvalues of the Schrödinger Hamiltonain and their Relation to Sobolev Inequalities. In: Studies in Mathematical Physics, Essays in Honor of Valentine Bargmann, A.S. Wightman, E.H. Lieb, and G.N. Simon, eds. Princeton, Princeton Univ. Press. 1976.

    Google Scholar 

  20. E.T. Whittaker and G.N. Watson: A Course of Modern Analysis. Cambridge, at the University Press, 1969.

    Google Scholar 

  21. J.T. Cannon: Infinite Volume Limits of the Canonical Free Bose Gas States on the Weyl Algebra. Commun. Math. Phys. 29, 89–104, 1973.

    Article  MathSciNet  ADS  Google Scholar 

  22. G. Lindblad: On the Generators of Quantum Dynamical Semigroups. Commun. Math. Phys. 48, 119–130, 1976.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. A. Kossakowski and E.C.G. Sudarshan: Completely Positive Dynamical Semigroups of N-Level Syatems. J. Math. Phys. 17, 821–825, 1976.

    Article  MathSciNet  ADS  Google Scholar 

  24. T.L. Saaty and J. Bram: Nonlinear Mathematics. New York, McGraw-Hill, 1964.

    MATH  Google Scholar 

  25. D. Ruelle: Statistical Mechanics, Rigorous Results. New York, Benjamin, 1969.

    Google Scholar 

  26. A. Guichardet: Systèmes Dynamiques non Commutatifs. Astérisque 13–14, 1974.

    Google Scholar 

  27. I.M. Gel’fand, R.A. Minlos, and Z.Ya: Shapiro. Representations of the Rotation and Lorenz Group and their Applications. Oxford, Pergamon Press, 1963.

    Google Scholar 

  28. R.B. Israel, ed: Convexity in the Theory of Lattice Gases. Princeton, Princeton Univ. Press, 1979.

    Google Scholar 

  29. O. Bratteli and D.W. Robinson. Operator Algebras and Quantum Statistical Mechanics, in two volumes. New York, Springer, 1979, 1980.

    Book  Google Scholar 

  30. H. Narnhofer: Kommutative Automorphismen und Gleichgewichszustände. Acta Phys. Austriaca 47, 1–29, 1977.

    MathSciNet  Google Scholar 

  31. H. Narnhofer; Scattering Theory for Quasi-Free Time Automorphisms of C*-Algebras and von Neumann Algebras. Rep. Math. Phys. 16, 1–8, 1979.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. H. Araki and G.L. Sewell: KMS Conditions and Local Thermodynamic Stability of Quantum Lattice Systems. Commun. Math. Phys. 52, 103–109, 1977.

    Article  MathSciNet  ADS  Google Scholar 

  33. G.L. Sewell: Relaxation, Application, and the KMS Conditions. Ann. Phys.(N.Y.) 85, 336–377, 1974.

    Article  MathSciNet  ADS  Google Scholar 

  34. H. Narnhofer and G.L. Sewell: Vlasov Hydrodynamics of a Quantum Mechanical Model. Commun. Math. Phys. 79, 9–24, 1981.

    Article  MathSciNet  ADS  Google Scholar 

  35. J. Messer: The Pressure of Fermions with Gravitational Interaction. Z. Phys. B33, 313–316, 1979.

    Google Scholar 

  36. W. Thirring: A Lower Bound with the Best Possible Constant for Coulomb Hamiltonians. Commun. Math. Phys. 79, 1–7, 1981.

    Article  MathSciNet  ADS  Google Scholar 

  37. E.H. Lieb: The Stability of Matter. Rev. Mod. Phys. 48, 553–569, 1976.

    Article  MathSciNet  ADS  Google Scholar 

  38. J. Lebowitz and E.H. Lieb. The Constitution of Matter: Existence of Thermodynamics for Systems Composed of Electrons and Nuclei. Adv. Math. 9, 316–398, 1972.

    Article  MathSciNet  Google Scholar 

  39. E.H. Lieb: The Number of Bound States of One-Body Schrödinger Operators and the Weyl Problem. Proc. Symposia in Pure Math. 36, 241–252, 1980.

    Article  MathSciNet  Google Scholar 

  40. E.H. Lieb: Proof of an Entropy Conjecture of Wehrl. Commun. Math. Phys. 62, 35–41, 1978.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. N. Dunford and J.T. Schwartz: Linear Operator, part I. New York, Wiley-Interscience, 1967.

    Google Scholar 

  42. E.H. Lieb: Thomas—Fermi and Related Theories of Atoms and Molecules. Rev. Mod. Phys. 53, 603–641, 1981.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. S. Chandrasekhar: An Introduction to the Study of Stellar Structure. New York, Dover, 1967.

    Google Scholar 

  44. H. Posch, H. Narnhofer, W. Thirring: Dynamics of Unstable Systems. Phys. Rev. A42, 1880–1890, 1990.

    Article  MathSciNet  ADS  Google Scholar 

  45. H. Narnhofer, W. Thirring: Quantum Field Theories with Galilei-Invariant Interactions. Phys. Rev. Lett. 64, 1863–1866, 1990.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. R. Haag: Local Quantum Field Theory. Berlin, Springer, 1992.

    Google Scholar 

  47. G. Emch: Generalized K-Flows. Commun. Math. Phys. 49, 191–215, 1976.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. P. Walters: An Introduction to Ergodic Theory. New York, Springer, 1982.

    Book  MATH  Google Scholar 

  49. R. Longo, C. Peligrad: Noncommutative Topological Dynamics and Compact Actions on C*-Algebras. J. Funct. Anal. 58, 157–174, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  50. A. Kishimoto, D. Robinson: Dissipations, Derivations, Dynamical Systems, and Asymptotic Abelianess. J. Op. Theor. 13, 237–253, 1985.

    MathSciNet  MATH  Google Scholar 

  51. O. Bratteli, G. Elliott, D. Robinson: Strong Topological Transitivity and C*- Dynamical Systems. J. Math. Soc. Jap. 37, 115–133, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  52. H. Narnhofer, W. Thirring: Mixing Properties of Quantum Systems. J. Stat. Phys. 57, 811–825, 1989.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. H. Narnhofer, W. Thirring: Galilei-Invariant Quantum Field Theories with Pair Interactions. Int. Journ. Mod. Phys. A6, 2937–2990, 1991.

    Article  MathSciNet  ADS  Google Scholar 

  54. C.D. Jäkel: Asymptotic Triviality of the Moller Operators in Galilei Invariant Quantum Field Theories. Lett. Math. Phys. 21, 343–350, 1991.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. W. Schröder: In: Quantum Probability and Applications, Lecture Notes in Mathematics, vol. 1055, L. Accardi, A. Gorini, eds. Berlin, Springer, 1984.

    Google Scholar 

  56. H. Narnhofer, W. Thirring: Algebraic K-systems. Lett. Math. Phys. 20, 231–250, 1990.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. H. Narnhofer, W. Thirring: Clustering for Algebraic K-Systems. Lett. Math. Phys. 30, 307–316, 1994.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. H. Narnhofer, W. Thirring: From Relative Entropy to Entropy. Fizika 17, 258–265, 1985.

    Google Scholar 

  59. A. Kolmogorov: A New Metric Invariant of Transitive Systems and Automorphisms of Lebesgue Spaces. Dokl. Akad. Nauk 119, 861–864, 1958.

    MathSciNet  MATH  Google Scholar 

  60. A. Connes, H. Narnhofer, W. Thirring: Dynamical Entropy of C*-Algebras and von Neumann Algebras. Commun. Math. Phys. 112, 691–719, 1987.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. J. Sauvageot, J. Thouvenot: Une nouvelle définition de l’entropie dinamique des systèmes non commutatifs. Commun. Math. Phys. 145, 411–423, 1992.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. M. Ohya, D. Petz, Quantum Entropy and its Use: New York, Springer, 1993.

    Book  MATH  Google Scholar 

  63. E.H. Lieb, S. Oxford: Improved Lower Bound on the Indirect Coulomb Energy. Int. J. Quant. Chem. 19, 427–439, 1981.

    Article  Google Scholar 

  64. H. Narnhofer, W. Thirring: Adiabatic Theorem in Quantum Statistical Mechanics. Phys. Rev. A 26, 3645–3651, 1982.

    Article  MathSciNet  ADS  Google Scholar 

  65. H. Brézis: Some Variational Problems of the Thomas—Fermi Type. In: Variational Inequalities and Complementary Problems, Cottle, Giannessi, and J.-L. Lions, eds. new York, Wiley, 1980, 53–73.

    Google Scholar 

  66. H. Brézis, R. Benguria, and E.H. Lieb: The Thomas—Fermi—von Weizsäcker Theory of Atoms and Molecules. Commun. Math. Phys. 79, 167–180, 1981.

    Article  ADS  MATH  Google Scholar 

  67. E.H. Lieb: Thomas—Fermi and Related Theories of Atoms and Molecules. Rev. Mod. Phys. 53, 603–641, 1981.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. E.H. Lieb: Bound on the Maximum Negative Ionization Energy of Atoms and Molecules. Phys. Rev. A 29, 3018–3028, 1984.

    Article  ADS  Google Scholar 

  69. R. Benguria, E.H. Lieb: The Most Negative Ion in the Thomas—Fermi—von Weizsäcker Theory of Atoms and Molecules. J. Phys. B 18, 1045–1059, 1985.

    Article  MathSciNet  ADS  Google Scholar 

  70. C. Fefferman: The Thermodynamic Limit for a Cristal. Commun. Math. Phys. 98, 289–311, 1985.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. C. Fefferman: The Atomic and Molecular Nature of Matter. Rev. Mat. Iberoam. 1, 1985.

    Google Scholar 

  72. P.-L. Lions: Solutions of Hartree—Fock Equations for Coulomb Systems. Commun. Math. Phys. 109, 33–97, 1987.

    Article  ADS  MATH  Google Scholar 

  73. J.P. Solovej: Universality in the Thomas—Fermi—von Weizsäcker Model of Atoms and Molecules. Commun. Math. Phys. 129, 561–598, 1990.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. J. Yngvason: Thomas—Fermi Theory for Matter in a Magnetic Field as a Limit of Quantum Mechanics. Lett. Math. Phys. 22, 107–117, 1991.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. E.H. Lieb, J.P. Solovej, and J. Yngvason: Heavy Atoms in the strong Magnetic Field of a neutron star. Phys. Rev. Lett. 69, 749–753, 1992.

    Article  ADS  Google Scholar 

  76. I. Catto, P.-L. Lions: Binding of Atoms and Stability of Molecules in Hartree and Thomas—Fermi Type Theories, parts 1, 2, 3, 4. Commun. Part. Duff. Eq. 17, 18, 1992, 1993.

    Google Scholar 

  77. C. Le Bris: Some Results on the Thomas—Fermi—Dirac—von Weizsäcker Model. Diff. Mt. Eq. 6, 337–353, 1993.

    MATH  Google Scholar 

  78. I. Fushiki, E. Gudmundsson, C.J. Pethick, Ö.E. Rögnvaldsson, and J. Yngvason: Thomas—Fermi Calculations of Atoms and Matter in Magnetic Neutron Stars: Effects of Higher Landau Bands. Astrophys. J. 416, 276–290, 1993.

    Article  ADS  Google Scholar 

  79. E.H. Lieb, J.P. Solovej, and J. Yngvason: Asymptotics of Heavy Atoms in High Magnetic Fields. I: Lowest Landau Band Regions. Commun. Pure and Appl. Math. 47, 513–593, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  80. E. Lieb, J.P. Solovej, and J. Yngvason: Asymptotics of Heavy Atoms in High Magnetic Fields. II: Semiclassical Regions. Commun. Math. Phys. 161, 77–124, 1994.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  81. J.P. Solovej: An Improvement on Stability of Mater in Mean Field Theory. Proceedings of the Conference on PDEs and Mathematical Physics. University of Alabama, International Press, 1994.

    Google Scholar 

  82. C. Fefferman: Stability of Coulomb Systems in a Magnetic Field. Proc. Natl. Acad. Sci. USA 92, 5006–5007, 1995.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  83. E.H. Lieb, M. Loss, and J.P. Solovej: Stability of Matter in Magnetic Fields. Phys. Rev. Lett. 75, 985–989, 1995.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. E. Lieb, J.P. Solovej, and J. Yngvason: The Ground States of Large Quantum Dots in Magnetic Fields. Phys. Rev. B 51, 10646–10665, 1995.

    Article  ADS  Google Scholar 

  85. C. Fefferman, J. Fröhlich and G.M. Graf: Stability of Nonrelativistic Quantum Mechanical Matter Coupled to the (ultraviolet cutoff) Radiation Field. Proc. Natl. Acad. Sci. USA 93, 15009–15011, 1996.

    Article  ADS  Google Scholar 

  86. C. Catto, C. Le Bris, and P.-L. Lions: Limite Thermodynamique pour des modèles de type Thomas—Fermi. C. R. Acad. Sci. Paris 322, Série I, 357–364, 1996.

    Google Scholar 

  87. F. Nakano: The Thermodynamic Limit of the Magnetic Thomas—Fermi Energy. J. Math. Sci. Univ. Tokyo 3, 713–722, 1996.

    MathSciNet  MATH  Google Scholar 

  88. Y. Netrusov, T. Weidl: On Lieb—Thirring Inequalities for Higher Order Operators with Critical and Subcritical Powers. Commun. Math. Phys. 182, 355–370, 1996.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  89. T. Weidl: On the Lieb-Thirring Constants. Commun. Math. Phys. 178, 135–146, 1996.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  90. C. Fefferman, J. Fröhlich and G.M. Graf: Stability of Ultraviolet Cutoff Quantum Electrodynamics with Non-relativistic Matter. Commun. Math. Phys. 190, 309–330, 1997.

    Article  ADS  MATH  Google Scholar 

  91. The Stability of Matter: from Atoms to Stars. Selecta of E.H. Lieb. 2nd enl. ed., W. Thirring ed., Berlin-Heidelberg, Springer, 1997.

    Google Scholar 

  92. E.H. Lieb, H. Siedentop, and J.P. Solovej: Stability and Instability of Relativistic Electrons in Magnetic Fields. J. Stat. Phys. 89, 37–59, 1997.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  93. I. Catto, C. Le Bris, and P.-L. Lions: Mathematical Theory of Thermodynamic Limits: Thomas—Fermi Type Models. Oxford Mathematical Monographs. Oxford, Clarendon Press, 1998.

    Google Scholar 

  94. J. Yngvason: Quantum dots. A Survey of Rigorous Results. Operator Theory: Advances and Applications 108, 161–180, 1999.

    MathSciNet  Google Scholar 

  95. D. Hundertmark, A. Laptev, T. Weidl: New Bounds on the Lieb—Thirring Constants. (to be published in Acta Mathematica).

    Google Scholar 

  96. A. Laptev, T. Weidl. Sharp Lieb—Thirring Inequalities in High Dimensions. (to be published in Invent. Mathematicae).

    Google Scholar 

  97. E.H. Lieb and B. Simon: The Thomas—Fermi Theory of Atoms, Molecules, and Solids. Adv. Math. 23, 22–116, 1977.

    Article  MathSciNet  Google Scholar 

  98. H. Narnhofer and W. Thirring: Asymptotic Exactness of Finite Temperature Thomas—Fermi Theory. Ann. Phys. (N.Y.) 134, 128–140, 1981.

    Article  MathSciNet  ADS  Google Scholar 

  99. B. Baumgartner: The Thomas—Fermi Theory as Result of a Strong-Coupling Limit, Commun. Math. Phys. 47, 215–219, 1976.

    Article  MathSciNet  ADS  Google Scholar 

  100. P. Hertel, H. Narnhofer, and W. Thirring: Thermodynamic Functions for Fermions with Gravostatic and Electrostatic Interactions. Commun. Math. Phys. 28, 159–176, 1972.

    Article  MathSciNet  ADS  Google Scholar 

  101. P. Hertel and W. Thirring: In: Quanten und Felder. H. Dürr, ed. Brunswick, Vieweg, 1971.

    Google Scholar 

  102. J. Messer: Temperature Dependent Thomas—Fermi Theory, Lectures Notes in Physics, vol. 147. New York and Berlin, Springer, 1979.

    Google Scholar 

  103. B. Baumgartner: Thermodynamic Limit of Correlation Functions in a System of Gravitating Fermions. Commun. Math. Phys. 48, 207–213, 1976.

    Article  MathSciNet  ADS  Google Scholar 

  104. E.H. Lieb: The Stability of Matter. Rev. Mod. Phys. 48, 553–569, 1976.

    Article  MathSciNet  ADS  Google Scholar 

  105. W. Thirring: Stability of Matter. In: Current Problems in Elementary Particle and Mathe- matical Physics, P. Urban, ed. Acta Phys. Austriaca Suppl. XV, 337–354, 1976.

    Chapter  Google Scholar 

  106. R. Griffiths: Microcanonical Ensemble in Quantum Statistical Mechanics. J. Math. Phys. 6, 1447–1461, 1965.

    Article  ADS  Google Scholar 

  107. H. Narnhofer and W. Thirring: Convexity Properties for Coulomb Systems. Acta Phys. Austriaca. 41, 281–297, 1975.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thirring, W. (2002). Physical Systems. In: Quantum Mathematical Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05008-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05008-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07711-1

  • Online ISBN: 978-3-662-05008-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics