Advertisement

Thermodynamics

  • Walter Thirring
Chapter

Abstract

The framework for this discussion will be an algebra A of observables with a strongly continuous time-automorphism and a time-invariant state ρ In the GNS representation the invariant state is made into a vector \(\left| \Omega \right\rangle \), and the timeautomorphism is represented as a unitary group of operators \(U = \left\{ {\exp (iHt)} \right\},U\left| \Omega \right\rangle = \left| \Omega \right\rangle \). The time-evolution then extends to the weak closure A″. If the representation is reducible, then it may occur that UA″, even if \(U_t^{ - 1}A{U_t} \subset A.\) The von Neumann algebra
$$ R \equiv {\left\{ {A \cup U} \right\}^{\prime \prime }},R' = A' \cap U', $$
generated by A and U is known as the covariance algebra and will figure prominently in what follows.

Keywords

Relative Entropy Invariant State Infinite System Free Fermion Invariant Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bisognano, E.H. Wichmann: On the Duality Condition for a Hermitian Scalar Field. Journ. Math. Phys. 16, 985–1007, 1975.MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    R. Figari, R. Hoegh-Krohn, C.R. Nappi: Interacting Relativistic Boson Fields in the de Sitter Universe with Two Space-Time Dimensions. Commun. Math. Phys. 44, 265–278, 1975.MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    J. Bisognano, E.H. Wichmann: On the Duality Condition for Quantum Fields. Journ. Math. Phys. 17, 303–312, 1976.MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    G.G. Emch: Generalized K-Flows. Commun. Math. Phys. 49, 191–215, 1976.MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    L. Accardi, A. Frigerio, J.T. Lewis: Quantum Stochastic Processes. Publ. RIMS Kyoto 18, 97–133, 1982.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    H. Kosaki: Extension of Jones Theory on Index to Arbitrary Factors. Journ. Funct. Analysis 66, 123–140, 1986.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    M. Pimsner, S. Popa: Entropy and Index for Subfactors. Ann. Sci. Ec. Norm. Sup. 19, 57–106, 1986.MathSciNetMATHGoogle Scholar
  8. 8.
    A. Connes, H. Narnhofer, W. Thirring: Dynamical Entropy of C*-Algebras and von Neumann Algebras. Commun. Math. Phys. 112, 691–719, 1987.MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    R. Longo: Simple Injective Subfactors. Advances in Mathematics 63, 152–171, 1987.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    L. Price: Shifts of IIi Factors. Canad. J. Math. 39, 492–511, 1987.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    B. Kammerer: Survey on a Theory of non commutative stationary Markov processes, Quantum probability and applications III, L. Accardi, W. v. Waldenfeld eds., Berlin, Springer, 1988, p. 228–244.Google Scholar
  12. 12.
    M. Pimsner, S. Popa; Iterating the Basic Construction. Trans. Amer. Math. Soc. 310, 127–133, 1988.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    R.T. Powers: An Index Theory for Semigroups of *-endomorphisms of B(H) and Type III Factors. Canad. J. Math. 40, 86–114, 1988.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    H. Narnhofer, W. Thirring: Quantum K-Systems. Commun. Math. Phys. 125, 565–577, 1989.MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    H. Narnhofer, A. Pflug, W. Thirring: Mixing and Entropy Increase in Quantum Systems. Scuola Normale Superiore Pisa 597–626, 1989.Google Scholar
  16. 16.
    R. Longo: Index of Subfactors and Statistics of Quantum Fields. Commun. Math. Phys. 130, 285–309, 1990.MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    H. Narnhofer, W. Thirring: Algebraic K-Systems. Leu. Math. Phys. 20, 231–250, 1990.MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    F. Benatti: Deterministic Chaos in Infinite Quantum Systems, SISSA Notes in Physics, Berlin-Heidelberg-New York, Springer, 1993.CrossRefGoogle Scholar
  19. 19.
    H.J. Borchers: On Modular Inclusion and Spectrum Condition. Lett. Math. Phys. 27, 311–324, 1993.MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    H.W. Wiesbrock: Halfsides Modular Inclusions of von Neumann Algebras. Commun. Math. Phys. 157, 83–92, 1993;MathSciNetADSMATHCrossRefGoogle Scholar
  21. H.W. Wiesbrock: Halfsides Modular Inclusions of von Neumann Algebras. Commun. Math. Phys. 184, 683–685, 1997.MathSciNetGoogle Scholar
  22. 21.
    R. Alicki, H. Fannes: Defining Quantum Dynamical Entropy. Lett. Math. Phys. 32, 75–82, 1994.MathSciNetADSMATHCrossRefGoogle Scholar
  23. 22.
    G.G. Emch, H. Narnhofer, G.L. Sewell, W. Thirring: Anosov Actions on Non-Commutative Algebras. J. Math. Phys. 35/11, 5582–5599, 1994.Google Scholar
  24. 23.
    H. Narnhofer, W. Thirring: Clustering for Algebraic K-Systems. Lett. Math. Phys. 30, 307–316, 1994.MathSciNetADSMATHCrossRefGoogle Scholar
  25. 24.
    H. Namhofer, E. Sttbrmer, W. Thirring: C*-dynamical systems for which the tensor product formula for entropy fails. Ergod. Th. and Dyn. Systems 15, 961–968, 1995.CrossRefGoogle Scholar
  26. 25.
    D.V. Voiculescu: Dynamical Approximation Entropies and Topological Entropy in Operator Algebras 2. Commun. Math. Phys. 170, 249–282, 1995.MathSciNetADSMATHCrossRefGoogle Scholar
  27. 26.
    H. Namhofer, I. Peter, W. Thirring: How Hot is the de Sitter Space. Int. J. Mod. Phys. B 10, 1507–1520, 1996.ADSCrossRefGoogle Scholar
  28. 27.
    H. v. Beijeren, J.R. Dorfmann, H.A. Posch, Ch. Dellago: Kolmogorov—Sinai entropy for dilute gases in equilbrium. Phys. Rev. E 56/5, 5272–5277, 1997.Google Scholar
  29. 28.
    H.J. Borchers: On the Revolutionization of Quantum Field Theory by Tomita’ s Modular Theory. Preprint ESI-773–1999 (160 pages, 148 references).Google Scholar
  30. 29.
    D. Shlyakhtenko: Free Quasifree States. Pac. Journ. of Math. 177, 329–368, 1997.MathSciNetMATHCrossRefGoogle Scholar
  31. 30.
    H.W. Wiesbrock: Symmetries and Modular Intersections of von Neumann Algebras. Lett. Math. Phys. 39, 203–212, 1997.MathSciNetMATHCrossRefGoogle Scholar
  32. 31.
    G.G. Emch, I. Peter: Quantum Anosov Flows: A New Family of Examples. Journ. Math. Phys. 39/9, 4513–4539, 1998.Google Scholar
  33. 32.
    V.Ya. Golodets, S.V. Neshveyev: Non Bernoullian Quantum K-Systems. Commun. Math. Phys. 195, 213–232, 1998.MathSciNetADSMATHCrossRefGoogle Scholar
  34. 33.
    V.Ya. Golodets, E. Stormer: Entropy of C*-Dynamical Systems Defined by Bitstreams. Ergod. Th. and Dynam. Systems 18, 1–16, 1998.MathSciNetCrossRefGoogle Scholar
  35. 34.
    H. Narnhofer, W. Thirring: Equivalence of Modular K and Anosov Dynamical Systems. Preprint UWThPh-1998-xx, to be publ. in Rev. Math. Phys.Google Scholar
  36. 35.
    H.W. Wiesbrock: Modular Intersections of von Neumann Algebras in Quantum Field Theory. Commun. Math. Phys. 193, 269–285, 1998.MathSciNetADSMATHCrossRefGoogle Scholar
  37. 36.
    H.J. Borchers: On Thermal States of (1+1)-Dimensional Quantum Systems. Preprint ESI-788–1999.Google Scholar
  38. 37.
    H.J. Borchers, J. Yngvason: Modular Groups of Quantum Fields in Thermal States. J. Math. Phys. 40, 601–624, 1999.MathSciNetADSMATHCrossRefGoogle Scholar
  39. 38.
    M. Choda: Entropy on Cuntz’s Canonical Endomorphism. Pacif. Journ. of Math. 190, 235–245, 1999.MathSciNetMATHCrossRefGoogle Scholar
  40. 39.
    H. Narnhofer: Time Reversibility for Modular K-Systems. Preprint (1999), ESI 716, to be publ. in Rep. Math. Phys..Google Scholar
  41. 40.
    H. Narnhofer, W. Thirring: Realizations of Two-Sided Quantum K-Systems. Preprint (1999), ESI 717, to be publ. in Rep. Math. Phys.Google Scholar
  42. D. Ruelle: Statistical Mechanics, Rigorous Results. New York, Benjamin, 1969.Google Scholar
  43. G. Emch: Algebraic Methods in Statistical Mechanics and Quantum Field Theory. New York, Wiley, 1971.Google Scholar
  44. E.B. Davies: Quantum Theory of Open Systems. New York, Academic Press,1976.Google Scholar
  45. V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E.C.G. Sudarshan: Properties of Quantum Markovian Master Equations. Rep. Math. Phys. 13, 149–173, 1978.MathSciNetADSMATHCrossRefGoogle Scholar
  46. P. Martin: Modèls en Méchanique Statistique des Processus Irréversibles. New York and Berlin, Springer, 1979.Google Scholar
  47. G. Lindblad: Completely Positive Maps and Entropy Inequalities. Commun. Math. Phys. 40, 147–151, 1975.MathSciNetADSMATHCrossRefGoogle Scholar
  48. A. Uhlmann: Relative Entropy and the Wigner—Yanase—Dyson—Lieb Concavity in an Interpolation Theory. Commun. Math. Phys. 54, 21–322, 1970.MathSciNetADSCrossRefGoogle Scholar
  49. F. Greenleaf: Invariant Means on Topological Groups. New York, Van Nostrand, 1966.Google Scholar
  50. A. Guichardet. Systémes Dynamiques non Commutatifs. Astérisque 13–14, 1974.Google Scholar
  51. V.I. Arnol’d and A. Avez: Ergodic Problems of Classical Mechanics. New York, Benjamin, 1968.Google Scholar
  52. N.M. Hugenholtz: In: Mathematics of Contemporary Physics, R. Streater, ed. New York and London, Academic Press, 1972.Google Scholar
  53. R. Haag, N.M. Hugenholtz, and M. Winnink: On the Equilibrium States in Quantum Statistical Mechanics. Commun. Math. Phys. 5, 215–236, 1967.MathSciNetADSMATHCrossRefGoogle Scholar
  54. M. Takesaki: Tomita’s Theory of Modular Hilbert Algebras and Its Applications, Lecture Notes in Mathematics, vol. 128. New York and Berlin, Springer, 1970.Google Scholar
  55. H. Narnhofer and D.W. Robinson: Dynamical Stability and Pure Thermodynamic Phases. Commun. Math. Phys. 41, 89–97, 1975.MathSciNetADSCrossRefGoogle Scholar
  56. R. Haag, D. Kastler, and E.B. Trych-Pohlmeyer: Stability and Equilibrium States. Commun. Math. Phys. 38, 173–193, 1974.MathSciNetADSCrossRefGoogle Scholar
  57. W. Pusz and S.L. Woronovicz: Passive States and KMS States for General Quantum Systems. Commun. Math. Phys. 58, 273–290, 1978.ADSCrossRefGoogle Scholar
  58. A. Lenard: Thermodynamical Proof of the Gibbs Formula for Elementary Quantum Systems. J. Stat. Phys. 19, 575–586, 1978.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Walter Thirring
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of ViennaViennaAustria

Personalised recommendations