Skip to main content

Quantum Dynamics

  • Chapter

Abstract

In classical mechanics, every function F on phase space generates a one-parameter group of diffeomorphisms exp(t LX F .) (t ∈ R and LX F is the Lie derivative with respect to the Hamiltonian vector field corresponding to F). Similarly, we learned in §2.4 that in quantum theory every observable a is associated with a one-parameter group of automorphisms b → exp(iat)b exp(—iat). One of the basic postulates quantum theory is that, in units with ħ = 1, the groups generated by the Cartesian position and momentum coordinates x i and p j of n particles (j = 1, ....,n) are the same as classically, i.e., displacements respectively in the momenta and positions. Since x i and p j do not have bounded spectra, and hence cannot be represented by bounded operators, it is convenient to consider instead the bounded functions\(\exp \left( {i\sum\limits_{i = 1}^n {{X_j} \cdot {S_j}} } \right)and\exp \left( {i\sum\limits_{i = 1}^n {{p_j} \cdot {r_j}} } \right),{S_j}{r_j} \in {R^3}\) so as not to have domain questions to worry about. The group of automorphisms can be written in terms of them as follows:

Phase space is the arena of classical mechanics. The algebra of observables in quantum mechanics is likewise constructed with position and momentum, so this section covers the properties of those operators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • C. Cohen-Tannoudji, B. Diu, and F. Laloë: Quantum Mechanics. New York, Wiley, 1979.

    Google Scholar 

  • A. Galindo and P. Pascual: Mecânica Cudntica. Madrid, Alhambra, 1978.

    Google Scholar 

  • G. Grawert. Quantenmechanik. Wiesbaden, Akademie Verlagsgesellschaft, 1977.

    Google Scholar 

  • R. Jost: Quantenmechanik, in two volumes. Zurich, Verlag des Vereins der Mathematiker und Physiker an der ETH, 1969.

    Google Scholar 

  • A. Messiah: Quantum Mechanics, in two volumes. Amsterdam, North-Holland, 1961–1962.

    Google Scholar 

  • F.L. Pilar: Elementary Quantum Chemistry. New York, McGraw-Hill, 1968. L.I. Schiff: Quantum Mechanics. New York, McGraw-Hill, 1968.

    Google Scholar 

  • B. Simon: Quantum Mechanics for Hamiltonians Defined as Quadratic Forms. Princeton, Princeton University Press, 1974.

    Google Scholar 

  • H. Weyl: Gruppentheorie und Quantenmechanik. Leipzig, S. Hirzel, 1931.

    Google Scholar 

  • A.M. Perelomov: Coherent States for Arbitrary Lie Groups. Commun. Math. Phys. 26, 222–236, 1972.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • R. Jost: The General Theory of Quantized Fields. Providence, American Mathematical Society, 1965.

    MATH  Google Scholar 

  • R.F. Streater and A.S. Wightman: PCT, Spin, Statistics, and All That. New York, Benjamin, 1964.

    Google Scholar 

  • H. Weyl, op. cit.

    Google Scholar 

  • A.R. Edmonds: Angular Momentum in Quantum Mechanics. Princeton, Princeton University Press, 1974.

    Google Scholar 

  • P. Ehrenfest: Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. Phys. 45, 455–457, 1927.

    Article  MATH  Google Scholar 

  • T. Kato: On th Eigenfunctions of Many-Particle Systems in Quantum Mechanics. Commun. on Pure and Appl. Math. 10, 151–177, 1957.

    Article  MATH  Google Scholar 

  • K. Hepp: The Classical Limit for Quantum Mechanical Correlation Functions. Commun. Math. Phys. 35, 265–277, 1974.

    Article  MathSciNet  ADS  Google Scholar 

  • W.O. Amrein, Ph.A. Martin, and B. Misra: On the Asymptotic Condition of Scattering Theory. Helv. Phys. Acta 43, 313–344, 1970.

    MathSciNet  MATH  Google Scholar 

  • T. Kato: Wave Operators and Similarity for some Non-Selfadjoint Operators. Math. Ann. 162, 258–279, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  • S. Agmon: Spectral Properties of Schrödingher Operators and Scattering Theory. Ann. Scuola Norm. Sup. Pisa, Cl. di Sci., ser. IV, 2, 151–218, 1975.

    MathSciNet  MATH  Google Scholar 

  • P. Deift and B. Simon: A Time-Dependent Approach to the Completeness of Multiparticle Quantum Systems. Commun. on Pure and Appl. Math. 30, 573–583, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Weinstein and W. Stenger: Methods of Intermediate Problems for Eigenvalues: Theory and Ramifications. New York, Academic Press, 1972.

    MATH  Google Scholar 

  • M.F. Barnsley: Lower Bounds for Quantum Mechanical Energy Levels. J. Phys. A11, 55–68, 1978.

    MathSciNet  ADS  Google Scholar 

  • B. Baumgartner: A Class of Lower Bounds for Hamiltonian Operators. J. Phys. A12, 459467, 1979.

    Google Scholar 

  • R.J. Duffin: Lower Bounds for Eigenvalues. Phys. Rev. 71, 827–828, 1947.

    Article  MathSciNet  ADS  Google Scholar 

  • H. Grosse, private communication.

    Google Scholar 

  • P. Hertel, H. Grosse, and W. Thirring: Lower Bounds to the Energy Levels of Atomic and Molecular Systems. Acta Phys. Austr. 49, 89–112, 1978.

    MathSciNet  ADS  Google Scholar 

  • B. Simon: An Introduction to the Self-Adjointness and Spectral Analysis of Schrödinger Operators. In: The Schrödinger Equation, op. cit.,p. 19.

    Google Scholar 

  • V. Glaser, H. Grosse, A. Martin, and W. Thirring: A Family of Optimal Conditions for the Absence of Bound States in a Potential. In: Studies in Mathematical Physics, op. cit.,p.169.

    Google Scholar 

  • W.O. Amrein, J.M. Jauch, and K.B. Sinha: Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods. Lecture Notes and Supplements in Physics, vol. 16. New York, Benjamin, 1977.

    Google Scholar 

  • M.L. Goldberger and K.M. Watson: Collision Theory. New York, Wiley, 1964.

    MATH  Google Scholar 

  • R.G. Newton: Scattering Theory of Waves and Particles. New York, McGraw-Hill, 1966.

    Google Scholar 

  • W. Sandhas: The N-Body Problem. Acta Phys. Austr. Suppl., Vol. 13, Vienna and New York, Springer, 1974.

    Google Scholar 

  • J.R. Taylor: Scattering Theory. New York, Wiley, 1972

    Google Scholar 

  • K. Osterwalder, ed: Mathematical Problems in Theoretical Physics. Proc. Int. Conf. on Math. Phys. (Lausanne, Switzerland, Aug. 1979 ). Berlin-Heidelberg-New York, Springer, 1980.

    Google Scholar 

  • M.J. Englefield: Group Theory and the Coulomb Problem. New York, Interscience, 1972.

    MATH  Google Scholar 

  • H. Grosse, H.-R. Grümm, H. Narnhofer, and W. Thirring: Algebraic Theory of Coulomb Scattering. Acta Phys. Austr. 40, 97–103, 1974.

    Google Scholar 

  • E. Nelson: Time-Ordered Operator Products of Sharp-Time Quadratic Forms. J. Func. Anal. 11, 211–219, 1972.

    Article  MATH  Google Scholar 

  • W. Faris and R. Lavine: Commutators and Self-Adjointness of Hamiltonian Operators. Commun Math. Phys. 35, 39–48, 1974.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • R. Lavine: Spectral Densities and Sojourn Times. In: Atomic Scattering Theory, J. Nuttall, ed. London, Ontario, University of Western Ontario Press, 1978.

    Google Scholar 

  • R. Lavine and M. O’Carroll: Ground State Properties and Lower Bounds for Energy Levels of a Particle in a Uniform Magnetic Field and External Potential. J. Math. Phys. 18, 1908–1912, 1977.

    Article  MathSciNet  ADS  Google Scholar 

  • H. Narnhofer and W. Thirring: Convexity Properties for Coulomb Systems. Acta Phys. Austr. 41, 281–297, 1975.

    MathSciNet  Google Scholar 

  • T. Kinoshita: Ground State of the Helium Atom. Phys. Rev. 105, 1490–1502, 1957.

    Article  ADS  MATH  Google Scholar 

  • C.L. Pekeris: Ground State of Two-Electron Atoms. Phys. Rev. 112, 1649–1658, 1958.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • K. Frankowski and C.L. Pekeris: Logarithmic Terms in the Wave Function of the Ground State of Two-Electron Atoms.Phys. Rev. 146, 46–49, 1966.

    Article  Google Scholar 

  • R. Ahlrichs, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and J.D. Morgan: Bounds on the Decay of Electron Densities with Screening. Phys. Rev. A23, 2106, 1981.

    Article  MathSciNet  ADS  Google Scholar 

  • S. Agmon: Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N-body Schrödinger operators. Mathematical Notes, vol. 29. Tokyo, University of Tokyo Press, 1982.

    Google Scholar 

  • S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T.O. Sorensen: The electron density is smooth away from the nuclei. Commun. Math. Phys. 228, 401–415, 2002.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • W. Faris: Inequalities and Uncertainty Principles. J. Math. Phys. 19, 461–466, 1978.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thirring, W. (2002). Quantum Dynamics. In: Quantum Mathematical Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05008-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05008-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07711-1

  • Online ISBN: 978-3-662-05008-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics