The Mathematical Formulation of Quantum Mechanics

  • Walter Thirring


We begin by recollecting the basic definitions and theorems:


Hilbert Space Quantum Mechanics Weak Topology Hermitian Operator Unbounded Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. N.I. Akhiezer and I.M. Glazman. Theory of Linear Operators in Hilbert Space, in two volumes. New York, F. Ungar, 1961–1963.Google Scholar
  2. N. Dunford and J.T. Schwartz. Linear Operators, in three volumes. New York, Interscience, 1958–1971.Google Scholar
  3. E. Hille and R.S. Phillips. Functional Analysis and Semigroups. Amer. Math. Soc. Colloquium Publications, vol. 31. Providence, American Mathematical Society, 1957.Google Scholar
  4. K. Jörgens and J. Weidmann. Spectral Properties of Hamiltonian Operators, Lecture Notes in Mathematics, vol. 313. Heidelberg—New York, Springer, 1973.Google Scholar
  5. T. Kato. Perturbation Theory for Linear Operators. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 132. Berlin—Heidelberg—New York, Springer, 1966.Google Scholar
  6. G. Köthe. Topological Vector Spaces, vol. 1. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 159. Berlin—Heidelberg—New York, Springer, 1969.Google Scholar
  7. J. von Neumann. Mathematical Foundations of Quantum Mechanics. Princeton, Princeton University Press, 1955.Google Scholar
  8. F. Riesz and B.Sz.-Nagy. Functional Analysis. New York, F. Ungar, 1965.Google Scholar
  9. A.P. Robertson and W.J. Robertson. Topological Vector Spaces. Cambridge, At the University Press, 1964.MATHGoogle Scholar
  10. J. Weidmann. Lineare Operatoren in Hilberträumen. Stuttgart, B.G. Teubner, 1976.MATHGoogle Scholar
  11. K. Yôsida. Functional Analysis. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 123. Berlin—Heidelberg—New York, Springer, 1978.Google Scholar


  1. J.M. Jauch. Foundations of Quantum Mechanics. Reading, Mass., Addison-Wesley, 1968.MATHGoogle Scholar
  2. G. Ludwig. Die Grundlagen der Quantenmechanik. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 70. Berlin—Heidelberg—New York, Springer, 1954.Google Scholar
  3. G. Mackey. The Mathematical Foundations of Quantum Mechanics. New York, Benjamin, 1963.Google Scholar
  4. P. Mittelstaedt. Philosophical Problems of Modern Physics. Boston Studies in the Philosophy of Science, vol. 18. Boston, D. Reidel, 1976.Google Scholar
  5. C. Piron. Foundations of Quantum Physics. New York, Benjamin, 1976.Google Scholar
  6. O. Bratteli and D.W. Robinson. Operator Algebras and Quantum Statistical Mechanics,vol. I: C* and W* Algebras. Symmetry Groups. Decomposition of States. Texts and Monographs in Physics. Berlin—Heidelberg—New York, Springer, 1979.MATHCrossRefGoogle Scholar
  7. J. Dixmier. C* Algebras. Amstredam, North-Holland, and New York, Elsevier North Holland, 1977.Google Scholar
  8. M.A. Naimark. Normed Algebras. Groningen, Wolters-Noordhoff, 1972.Google Scholar
  9. S. Sakai. C* and W* Algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 60. Berlin—Heidelberg—New York, Springer, 1971.Google Scholar
  10. H. Trotter. On the Product of Semigroups of Operators. Proc. Amer. Math. Soc. 10, 545–551, 1959.MathSciNetMATHCrossRefGoogle Scholar
  11. F. Dyson. The Radiation Theories of Tomonaga, Schwinger, and Feynman. Phys. Rev. 75, 486–502, 1949.MathSciNetADSMATHCrossRefGoogle Scholar
  12. H. Narnhofer. Quantum Theory for 1/r2-Potentials. Acta Phys. Aust. 40, 306–322, 1974.MathSciNetGoogle Scholar
  13. G. Flamand. Applications of Mathematics to Problems in Theoretical Physics. In: Cargèse Lectures in Theoretical Physics, F. Lurçat, ed. New York, Gordon and Breach, 1967, p. 247.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Walter Thirring
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of ViennaViennaAustria

Personalised recommendations