Skip to main content

Regulated Single Photons and Entangled Photons From a Quantum Dot Microcavity

  • Chapter
Semiconductor Spintronics and Quantum Computation

Part of the book series: NanoScience and Technology ((NANO))

  • 801 Accesses

Abstract

Quantum cryptography has emerged as a significant field of study over the last fifteen years, because it offers the promise of private communication whose security is assured by the laws of quantum mechanics. Most implementations of quantum cryptography so far have used a protocol introduced by Bennet and Brassard, generally known as BB84 [1]. The message can be encoded on the polarization state of single photons, with a random choice between two non-orthogonal polarization bases when the photons are sent and received. Since an eavesdropper does not know what bases have been chosen, any measurement she makes will impose a detectable back-action on the states of the transmitted photons. Using error correction and privacy amplification, the communicating parties can distill the transmitted message into a secure key, about which the eavesdropper knows arbitrarily little.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India ( IEEE, New York, 1984 ), p. 175.

    Google Scholar 

  2. C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, J. Crypto. 5, 3 (1992).

    Article  Google Scholar 

  3. N. Lütkenhaus, Phys. Rev. A 61, 2304 (2000).

    Google Scholar 

  4. E. Waks, A. Zeevi, and Y. Yamamoto, e-print quant-ph/0012078, Dec. 16, 2000.

    Google Scholar 

  5. H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39, 691 (1977); F. Diedrich and H. Walther, Phys. Rev. Lett. 58, 203 (1987).

    Article  Google Scholar 

  6. T. Basché, W. E. Moerner, M. Orrit, and H. Talon, Phys. Rev. Lett. 69, 1516 (1992); L. Fleury, J.-M. Segura, G. Zumofen, B, Hecht, and U. P. Wild, Phys. Rev. Lett. 84, 1148 (2000).

    Article  Google Scholar 

  7. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, Phys. Rev. Lett. 85, 290 (2000); R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, Opt. Lett. 25, 1294 (2000).

    Article  Google Scholar 

  8. F. De Martini, G. Di Giuseppe, and M. Marrocco, Phys. Rev. Lett. 76, 900 (1996); B. Lounis and W. E. Moerner, Nature 407, 491 (2000).

    Article  Google Scholar 

  9. C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, Phys. Rev. Lett. 83, 2722 (1999).

    Article  CAS  Google Scholar 

  10. J. Kim, O. Benson, H. Kan, and Y. Yamamoto, Nature 397, 500 (1999); A. Imamoglu and Y. Yamamoto, Phys. Rev. Lett. 72, 210 (1994).

    Article  Google Scholar 

  11. M. Heinrich, T. Legero, A. Kuhn, and G. Rempe, Phys. Rev. Lett. 85, 4872 (2000).

    Article  Google Scholar 

  12. P. Michler et al, Nature 406, 968 (2000); B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, Chem. Phys. Lett. 329, 399 (2000).

    Google Scholar 

  13. C. Santori, M. Pelton, G.S. Solomon, Y. Dale, and Y. Yamamoto, Phys. Rev. Lett. 86, 1502 (2001).

    Article  CAS  Google Scholar 

  14. P. Michler et al, Science 290, 2282 (2000); V. Zwiller et al, Appl. Phys. Lett. 78, 2476 (2001).

    Google Scholar 

  15. E. M. Purcell, Phys. Rev. 69, 681 (1946); K. H. Drexhage, in Progress in Optics Vol. XII, edited by E. Wolfe ( North-Holland, Amsterdam, 1974 ), p. 165.

    Google Scholar 

  16. P. Goy, J.-M. Raimond, M. Gross, and S. Haroche, Phys. Rev. Lett. 50, 1903 (1983); G. Gabrielse and H. Dehmelt, Phys. Rev. Lett. 55, 67 (1985); R. G. Hulet, E. S. Hilfer, and D. Kleppner, Phys. Rev. Lett. 55, 2137 (1985); D. H. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, Phys. Rev. Lett. 58, 1320 (1987).

    Google Scholar 

  17. B. Ohnesorge et al., Phys. Rev. B 56, R4367 (1997); J.-M. Gérard et al., Phys. Rev. Lett. 81, 1110 (1998); L. A. Graham, D. L. Huffaker, and D. G. Deppe, Appl. Phys. Lett. 74, 2408 (1999).

    Google Scholar 

  18. G. S. Solomon, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. 86, 3903 (2001); Y. Yamamoto, S. Machida and G. Björk, Phys. Rev. A 44, 657 (1991).

    Article  Google Scholar 

  19. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. 84, 2513 (2000).

    Article  CAS  Google Scholar 

  20. A. K. Ekert, Phys. Rev. Lett, 67, 661 (1991).

    Article  Google Scholar 

  21. C. H. Bennett, G. Brassard and N. D. Mermin, Phys. Rev. Lett. 68, 557 (1992).

    Article  Google Scholar 

  22. Y. Yamamoto, M. Kitagawa and K. Igeta, Proc. 3rd Asia Pacific Phys. Conf. ( World Scientific, Singapore, 1988 ) p. 777.

    Google Scholar 

  23. G. J. Milburn, Phys. Rev. Lett. 62, 2124 (1989).

    Article  CAS  Google Scholar 

  24. I. Chuang and Y. Yamamoto, Phys. Rev. A 52, 3489 (1995).

    Article  CAS  Google Scholar 

  25. E. Knill, R. Laflamme and G. Milburn, Natuer 409, 46 (2001).

    Article  CAS  Google Scholar 

  26. M. Tabuchi, S. Noda, and A. Sasaki, in Science and Technology of Mesoscopic Structures (Springer-Verlag, Tokyo, 1992), p. 375; D. Leonard et al, Appl. Phys. Lett. 63, 3203 (1993); J.-Y. Marzin et al, Phys. Rev. Lett. 73, 716 (1994); M. Grundmann et al., Phys. Stat. Sol. (b), 188, 249 (1995).

    Google Scholar 

  27. Zh. I. Alferov et al., Semiconductors 30, 194 (1996); D. Bimberg et al., Quantum Dot Heterostructures (John Wiley & Sons, Chichester, 1999 ).

    Google Scholar 

  28. M. A. Hreman and H. Sitter, Molecular Beam Epitaxy: Fundamentals and Current Status, 2nd Ed. ( Springer, Berlin, 1996 ).

    Google Scholar 

  29. G. S. Solomon, J. A. Trezza, and J. S. Harris, Jr. Appl. Phys. Lett. 66, 991 (1995); G. S. Solomon, J. A. Trezza, and J. S. Harris, Jr. Appl. Phys. Lett. 66, 3161 (1995).

    Article  CAS  Google Scholar 

  30. S.A. Campbell, The Science and Engineering of Microelectronic Fabrication (Oxford University Press, Oxford, 1996 ).

    Google Scholar 

  31. B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, Phys. Rev. B 54, 11532 (1996).

    Article  CAS  Google Scholar 

  32. L. Landin, M. S. Miller, M.-E. Pistol, C. E. Pryor, and L. Samuelson, Science 280, 262 (1998); L. L.ndin et al, Phys. Rev. B 60, 16640 (1999); M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, Nature 405, 923 (2000).

    Google Scholar 

  33. J. J. Finley et al, Phys. Rev. B 63, 073307 (2001).

    Google Scholar 

  34. C. Santori, M. Pelton, G. S. Solomon, and Y. Yamamoto (to be published).

    Google Scholar 

  35. J.-M. Gérard and B. Gayral, J. Lightwave Technol. 17, 2089 (1999).

    Article  Google Scholar 

  36. S. Reynaud, Annales de Physique 8, 315 (1983).

    CAS  Google Scholar 

  37. P. R. Berman ad., Cavity Quantum Electrodynamics ( Academic Press, Boston, 1994 ).

    Google Scholar 

  38. Y. Yamamoto, S. Machida, K. Igeta, and Y. Horikoshi, Coherence and Quantum Optics, Vol. VI, edited by E. H. Eberly, et. al. (Plenum Press, New York, 1989), p. 1249; H. Yokoyama et al., Appl. Phys. Lett. 57, 2814 (1990).

    Google Scholar 

  39. G. Panzarini and L. C. Andreani, Phys. Rev. B 60, 16799 (1999).

    Article  CAS  Google Scholar 

  40. G. Björk, H. Heitmann, and Y. Yamamoto, Phys. Rev. A 47, 4451 (1993).

    Article  Google Scholar 

  41. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983 ).

    Google Scholar 

  42. A. Kiraz et al, Appl. Phys. Lett. 78, 3932 (2001).

    Article  CAS  Google Scholar 

  43. K. S. Yee, IEEE T. Antenn. and Propag. AP-14, 302 (1966).

    Google Scholar 

  44. A. Taflove, Computational Electrodynamics: (Artech House, Norwood, Massachusetts, 1995 ).

    Google Scholar 

  45. Y. Chen, R. Mittra, and P. Harms, IEEE T. Microw. Theory 44, 832 (1996).

    Article  Google Scholar 

  46. Y. Xu, J. Vuckovié, R. Lee, O. Painter, A. Scherer, and A. Yariv, IEEE T. Mi-crow. Theory 16, 465 (1999).

    CAS  Google Scholar 

  47. H. Drexler, D. Leonard, W. Hansen, J. P. Korthaus, and P. M. Petroff, Phys. Rev. Lett. 73 2252 (1994).

    Article  CAS  Google Scholar 

  48. E. Dekel, D. Gershoni, E. Ehrenfreund, D. Spektor, J. M. Garcia, and P. M. Petroff, Phys. Rev. Lett. 80 4991 (1998).

    Article  CAS  Google Scholar 

  49. M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B 52, 11969 (1995).

    Article  CAS  Google Scholar 

  50. M. Fricke, A. Lorke, J. P. Kotthaus, G. Medeiros-Ribeiro, and P. M. Petroff, Europhys. Lett. 36, 197 (1996).

    Article  CAS  Google Scholar 

  51. B. T. Miller, W. Hansen, S. Manus, R. J. Luyken, A. Lorke, J. P. Kottehaus, S. Huant, G. Medeiros-Ribeiro, and P. M. Petroff, Phys. Rev. B 56, 6764 (1997).

    Article  CAS  Google Scholar 

  52. A. Wojs and P. Hawrylak, Phys. Rev. B 53, 10841 (1996).

    Article  CAS  Google Scholar 

  53. F. M. Peeters and V. A. Schweigert, Phys. Rev. B 53, 1468 (1996).

    Article  CAS  Google Scholar 

  54. C. Weisbuch and B. Winter, Quantum Semiconductor Structures ( Academic Press, San Diego, 1991 ).

    Google Scholar 

  55. O. Stier, M. Grundmann, and D. Bimberg, Phys. Rev. B. 59, 5688 (1999).

    Article  CAS  Google Scholar 

  56. Y. Toda, S. Shinomori, K. Suzuki, and Y. Arakawa, Phys. Rev. B 58, R10147 (1998).

    Article  CAS  Google Scholar 

  57. K. Brunner, G. Abstreiter, G. Böhm, G. Tränkle, and G. Weimann, Phys. Rev. Lett. 73, 1138 (1994).

    Article  CAS  Google Scholar 

  58. A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).

    Article  Google Scholar 

  59. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).

    Article  Google Scholar 

  60. O. Benson and Y. Yamamoto, Phys. Rev. A 59, 4756 (1999).

    Article  CAS  Google Scholar 

  61. J. A. Gupta, D. D. Awschalom, X. Peng, and A. P. Alivisatos, Phys. Rev. B. 59, R10421 (1991).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yamamoto, Y. et al. (2002). Regulated Single Photons and Entangled Photons From a Quantum Dot Microcavity. In: Awschalom, D.D., Loss, D., Samarth, N. (eds) Semiconductor Spintronics and Quantum Computation. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05003-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05003-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07577-3

  • Online ISBN: 978-3-662-05003-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics