Skip to main content

Electron Spins in Quantum Dots as Qubits for Quantum Information Processing

  • Chapter
Semiconductor Spintronics and Quantum Computation

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Coherent manipulation, filtering, and measurement of electronic spin in quantum dots and other nanostructures are new technologies which have promising applications both in conventional and in quantum information processing and transmission. We review the spintronics proposal for quantum computing, in which electron spins in quantum confined structures play the role of the quantum bits (qubits), and discuss the essential requirements for such an implementation. We describe several realizations of one- and twoqubit quantum gates and of state preparation and measurement, based on an all-electrical scheme to control the dynamics of spin. We discuss recently proposed schemes for using a single quantum dot as a spin filter and spin read-out device, and show how the decoherence time can be measured in a transport set-up. We address the issue of spin decoherence due to non-uniform hyperfine interactions with nuclei and show that for electrons confined to dots the spin decay is non-exponential. Finally, we discuss methods for producing and detecting the spin-entanglement of electronic EPR pairs, being an important resource for quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. A. Prinz, Phys. Today 45(4), 58 (1995); Science 282, 1660 (1998).

    CAS  Google Scholar 

  2. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).

    Article  CAS  Google Scholar 

  3. J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom, Science 277, 1284 (1997); J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998); D. D. Awschalom and J. M. Kikkawa, Phys. Today 52 (6), 33 (1999).

    Article  Google Scholar 

  4. R. Fiederling et al., Nature 402, 787 (1999).

    Article  Google Scholar 

  5. Y. Ohno et al., Nature 402, 790 (1999).

    Article  CAS  Google Scholar 

  6. J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, Science 292, 2458 (2001).

    Article  CAS  Google Scholar 

  7. D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998); condmat/9701055.

    Google Scholar 

  8. G. Burkard, H.-A. Engel, and D. Loss, Fortschr. Phys. 48, 965 (2000).

    Article  CAS  Google Scholar 

  9. A. Steane, Rep. Prog. Phys. 61, 117 (1998).

    CAS  Google Scholar 

  10. D. P. DiVincenzo, D. Loss, J. Magn. Magn. Mater. 200 202 (1999); condmat/9901137.

    Google Scholar 

  11. C. H. Bennett and D. P. DiVincenzo, Nature 404, 247 (2000).

    Article  CAS  Google Scholar 

  12. D. P. DiVincenzo, Phys. Rev. A 51, 1015 (1995).

    CAS  Google Scholar 

  13. P. W. Shor, in Proc. 35th Symposium on the Foundations of Computer Science, (IEEE Computer Society Press), 124 (1994).

    Google Scholar 

  14. L. K. Grover, Phys. Rev. Lett. 79, 325 (1997); ibid 79, 4709 (1997); 80, 4329 (1998).

    CAS  Google Scholar 

  15. J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995);C. Monroe et al, ibid 75, 4714 (1995).

    Article  Google Scholar 

  16. Q. A. Turchette et al., Phys. Rev. Lett. 75, 4710 (1995).

    Article  CAS  Google Scholar 

  17. D. Cory, A. Fahmy, and T. Havel, Proc. Nat. Acad. Sci. U.S.A. 94, 1634

    Google Scholar 

  18. ); N. A. Gershenfeld and I. L. Chuang, Science 275, 350 (1997).

    Google Scholar 

  19. A. Shnirman, G. Schön, and Z. Hermon, Phys. Rev. Lett. 79, 2371 (1997); Y. Makhlin, G. Schön, and A. Shnirman, Phys. Rev. Lett. 85, 4578 (2000).

    Article  Google Scholar 

  20. D. V. Averin, Solid State Commun. 105, 659 (1998).

    Article  CAS  Google Scholar 

  21. L. B. Ioffe et al., Nature 398, 679 (1999).

    Article  Google Scholar 

  22. T. P. Orlando et al., Phys. Rev. B 60, 15398 (1999).

    Article  CAS  Google Scholar 

  23. V. Privman, I. D. Vagner, and G. Kventsel, Phys. Lett. A 239, 141 (1998).

    Article  CAS  Google Scholar 

  24. B. E. Kane, Nature 393, 133 (1998).

    Article  CAS  Google Scholar 

  25. C. H. W. Barnes, J. M. Shilton, A. M. Robinson, Phys. Rev. B 62, 8410 (2000).

    Article  CAS  Google Scholar 

  26. R. Vrijen et al., Phys. Rev. A 62, 012306 (2000).

    Google Scholar 

  27. J. Levy, Phys. Rev. A 64, 052306 (2001).

    Google Scholar 

  28. D. Bouwmeester et al., Nature 390, 575 (1997);

    Article  CAS  Google Scholar 

  29. D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, Phys. Rev. Lett. 80, 1121 (1998).

    Article  CAS  Google Scholar 

  30. C. H. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993).

    Article  Google Scholar 

  31. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

    Article  Google Scholar 

  32. O. Gywat, G. Burkard, and D. Loss, cond-mat/0109223.

    Google Scholar 

  33. L. P. Kouwenhoven, G. Schön, and L. L. Sohn, Mesoscopic Electron Transport, NATO ASI Series E, Vol. 345, Kluwer Academic Publishers (1997).

    Google Scholar 

  34. S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L. P. Kouwenhoven, Phys. Rev. Lett. 77, 3613 (1996).

    Article  CAS  Google Scholar 

  35. F. R. Waugh et al., Phys. Rev. Lett. 75, 705 (1995);

    Article  CAS  Google Scholar 

  36. C. Livermore et al., Science 274, 1332 (1996).

    Article  CAS  Google Scholar 

  37. T. H. Oosterkamp et al., Phys. Rev. Lett. 80, 4951 (1998).

    Article  CAS  Google Scholar 

  38. R. H. Blick et al., Phys. Rev. Lett. 80, 4032 (1998); ibid. 81, 689 (1998); T. H. Oosterkamp et al., Nature 395, 873 (1998);

    Article  Google Scholar 

  39. I. J. Maasilta and V. J. Goldman, Phys. Rev. Lett. 84, 1776 (2000).

    Article  CAS  Google Scholar 

  40. J. A. Gupta, D. D. Awschalom, X. Peng, and A. P. Alivisatos, Phys. Rev. B 59, R10421 (1999).

    Article  CAS  Google Scholar 

  41. M. Flatte and J. Byers, Phys. Rev. Lett. 84, 4220 (2000).

    Article  CAS  Google Scholar 

  42. H.-A. Engel and D. Loss, Phys. Rev. Lett. 86, 4648 (2001).

    Article  CAS  Google Scholar 

  43. G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59, 2070 (1999).

    Article  CAS  Google Scholar 

  44. M. Dobers, K. v. Klitzing, J. Schneider, G. Weimann, and K. Ploog, Phys. Rev. Lett. 61, 1650 (1988).

    Google Scholar 

  45. D. C. Dixon, K. R. Wald, P. L. McEuen, and M. R. Melloch, Phys. Rev. B 56, 4743 (1997).

    Article  CAS  Google Scholar 

  46. A. V. Khaetskii and Y. V. Nazarov, Phys. Rev. B 61, 12639 (2000); Phys. Rev. B 64, 125316 (2001); A. V. Khaetskii, Physica E 10, 27 (2001).

    Article  CAS  Google Scholar 

  47. V. F. Gantmakher and Y. B. Levinson, Carrier scattering in metals and semiconductors, North-Holland, Amsterdam, Chapter 1 (1987).

    Google Scholar 

  48. A. V. Khaetskii, D. Loss, and L. I. Glazman, cond-mat/0201303.

    Google Scholar 

  49. D. P. DiVincenzo, G. Burkard, D. Loss, and E. Sukhorukov, in Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics,eds. I.O. Kulik and R. Ellialtoglu (NATO ASI), p. 399 (2000); see cond-mat/99112445.

    Google Scholar 

  50. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999).

    Article  CAS  Google Scholar 

  51. M.-S. Choi, C. Bruder, and D. Loss, Phys. Rev. B 62, 13569 (2000).

    Article  CAS  Google Scholar 

  52. G. Burkard, D. Loss, D. P. DiVincenzo, and J. A. Smolin, Phys. Rev. B 60, 11404 (1999).

    Article  CAS  Google Scholar 

  53. J. Schliemann, D. Loss, and A. H. MacDonald, Phys. Rev. B 63, 085311 (2001).

    Google Scholar 

  54. P. W. Shor, Phys. Rev. A 52, R2493 (1995); A. M. Steane, Phys. Rev. Lett. 77, 793 (1996); D. P. DiVincenzo and P. W. Shor, ibid. 77, 3260 (1996); E. Knill and R. Laflamme, Phys. Rev. A 55, 900 (1997); D. Gottesman, ibid. 54, 1862 (1996).

    Google Scholar 

  55. J. Preskill, Proc. R. Soc. London Ser. A 454, 385 (1998); J. Preskill, in Introduction to Quantum Computation and Information, edited by H.-K. Lo, S. Popescu, and T. Spiller ( World Scientific, Singapore, 1998 ), pp. 213–269.

    Chapter  Google Scholar 

  56. L. Kouwenhoven and C. Marcus, private communication.

    Google Scholar 

  57. P. Recher, E.V. Sukhorukov, and D. Loss, Phys. Rev. Lett. 85, 1962 (2000).

    Article  CAS  Google Scholar 

  58. A. Barenco et al., Phys. Rev. A 52, 3457 (1995).

    Article  CAS  Google Scholar 

  59. X. Hu and S. Das Sarma, Phys. Rev. A 61, 062301 (2000).

    Google Scholar 

  60. G. Burkard, G. Seelig, and D. Loss, Phys. Rev. B 62, 2581 (2000).

    Article  CAS  Google Scholar 

  61. R. J. Luyken et al., Physica E 2, 704 (1998).

    Article  CAS  Google Scholar 

  62. D. G. Austing et al., Physica B 249–251, 206 (1998).

    Article  Google Scholar 

  63. K. V. Kavokin, Phys. Rev. B 64, 075305 (2001).

    Google Scholar 

  64. N. E. Bonesteel, D. Stepanenko, and D. P. DiVincenzo, Phys. Rev. Lett. 87, 207901 (2001).

    Google Scholar 

  65. G. Burkard and D. Loss, Phys. Rev. Lett. 88, 047903 (2002).

    Google Scholar 

  66. P. Recher, J. Levy, and D. Loss, in Macroscopic Quantum Coherence and Computing,eds. D. Averin, P. Silvestrini, (Plenum Press, NY, 2000); condmat/0009270.

    Google Scholar 

  67. P. W. Anderson, J. Phys. C 3, 2436 (1970).

    Article  CAS  Google Scholar 

  68. V. N. Golovach and D. Loss, cond-mat/0109155.

    Google Scholar 

  69. W. Izumida and O. Sakai, Phys. Rev. B 6210260 (2000), and references therein.

    Google Scholar 

  70. M. Eto, Y. Nazarov, Phys. Rev. B 64, 085322 (2001).

    Google Scholar 

  71. M. Pustilnik and L. I. Glazman, Phys. Rev. B 64, 045328 (2001).

    Google Scholar 

  72. M. Pustilnik and L. I. Glazman, Phys. Rev. Lett. 87, 216601 (2001).

    Google Scholar 

  73. E. L. Ivchenko, A. A. Kiselev, and M. Willander, Solid State Comm. 102, 375 (1997).

    Article  CAS  Google Scholar 

  74. G. Salis, Y. Kato, K. Ensslin, D. C. Driscoll, A. C. Gossard, and D. D. Awschalom, Nature 414, 619 (2001).

    Article  CAS  Google Scholar 

  75. D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K.B. Whaley, Nature 408, 339 (2000).

    Article  CAS  Google Scholar 

  76. P. C. Hammel, Z. Zhang, G. J. Moore, and M. L. Roukes, Journ. of Low Temp. Phys. 101, 59 (1995); J. A. Sidles, J. L. Garbini, K. L. Bruland, D. Rugar, O. Zueger, S. Hoen, and C. S. Yannoni, Rev. Mod. Phys. 67, 249 (1995).

    Article  Google Scholar 

  77. A. Peres, Quantum Theory: Concepts and Methods ( Kluwer, Dordrecht, 1993 ).

    Google Scholar 

  78. M. Devoret, D. Estève, and Ch. Urbina, Nature (London) 360, 547 (1992).

    Article  Google Scholar 

  79. D. V. Averin and Yu. V. Nazarov, in Single Charge Tunneling, eds. H. Grabert and M. H. Devoret, NATO ASI Series B, Vol. 294, Plenum Press, New York, 1992.

    Google Scholar 

  80. H.-A. Engel and D. Loss, Phys. Rev. B 62, 10238 (2000).

    Article  CAS  Google Scholar 

  81. H.-A. Engel and D. Loss, to be published in Phys. Rev. B, April 2002, condmat/0109470.

    Google Scholar 

  82. M. Ciorga et al., Phys. Rev. B 61, R16315 (2000).

    Article  CAS  Google Scholar 

  83. T. Fujisawa, Y. Tokura, and Y. Hirayama, Phys. Rev. B 63, R081304 (2001).

    Google Scholar 

  84. D. Loss and E.V. Sukhorukov, Phys. Rev. Lett. 84, 1035 (2000).

    Article  CAS  Google Scholar 

  85. G. Burkard, D. Loss, and E.V. Sukhorukov, Phys. Rev. B 61, R16303 (2000).

    Article  CAS  Google Scholar 

  86. J. Schliemann, J. I. Cirac, M. Kus, M. Lewenstein, and D. Loss, Phys. Rev. A 64,022303 (2001); quant-ph/0012094.

    Google Scholar 

  87. S. Lloyd, Phys. Rev. A 61, R010301 (1999).

    Google Scholar 

  88. A. K. Ekert and R. Jozsa, Rev. Mod. Phys. 68, 733 (1996).

    Article  CAS  Google Scholar 

  89. J. Ahn, T. C. Weinacht, and P. H. Bucksbaum, Science 287, 463 (2000).

    Article  CAS  Google Scholar 

  90. M. N. Leuenberger and D. Loss, Nature 410, 789 (2001).

    Article  CAS  Google Scholar 

  91. M. N. Leuenberger, D. Loss, M. Poggio, and D. D. Awschalom, to be published.

    Google Scholar 

  92. M. N. Leuenberger and D. Loss, Phys. Rev. B 61, 1286 (2000); ibid. 61, 12200 (2000).

    CAS  Google Scholar 

  93. G. Salis et al., Phys. Rev. Lett. 86, 2677 (2001). G. Salis, D. D. Awschalom, Y. Ohno, H. Ohno, Phys. Rev. B 64, 195304 (2001).

    Google Scholar 

  94. A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982); W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 81, 3563 (1998).

    Article  Google Scholar 

  95. J. R. Schrieffer, Theory of Superconductivity (Benjamin/Cummings, NY, 1964 ).

    Google Scholar 

  96. F. W. J. Hekking, L. I. Glazman, K. A. Matveev, and R. I. Shekhter, Phys. Rev. Lett. 70, 4138 (1993).

    Article  CAS  Google Scholar 

  97. P. Recher, E. V. Sukhorukov, and D. Loss, Phys. Rev. B 63, 165314 (2001).

    Google Scholar 

  98. S. Datta, Electronic Transport In Mesoscopic Systems (Cambridge University Press 1995), p. 260.

    Google Scholar 

  99. P. Recher and D. Loss, Journal of Superconductivity and Novel Magnetism 15, 49 (2002); P. Recher and D. Loss, cond-mat/0112298; for similar results, see also C. Bena et al., cond-mat/0202102.

    Google Scholar 

  100. A.F. Volkov, P.H.C. Magnée, B.J. van Wees, and T.M. Klapwijk, Physica C 242, 261 (1995).

    Article  CAS  Google Scholar 

  101. M. Kociak et al., Phys. Rev. Lett. 86, 2416 (2001).

    Article  CAS  Google Scholar 

  102. M. Bockrath et al., Nature 397, 598 (1999).

    Article  CAS  Google Scholar 

  103. H.J. Schulz, Phys. Rev. Lett. 64, 2831 (1990).

    Article  Google Scholar 

  104. R. Egger and A. Gogolin, Phys. Rev. Lett. 79, 5082 (1997).

    Article  CAS  Google Scholar 

  105. C. Kane, L. Balents, and M.P. Fisher, Phys. Rev. Lett. 79, 5086 (1997).

    Article  CAS  Google Scholar 

  106. G. D. Mahan, Many Particle Physics, 2nd Ed. ( Plenum, New York, 1993 ).

    Google Scholar 

  107. R. Loudon, Phys. Rev. A 58, 4904 (1998).

    CAS  Google Scholar 

  108. R. Hanbury Brown and R. Q. Twiss, Nature (London) 177, 27 (1956).

    Article  Google Scholar 

  109. M. Büttiker, Phys. Rev. Lett. 65, 2901 (1990); Phys. Rev. B 46, 12485 (1992).

    Google Scholar 

  110. T. Martin and R. Landauer, Phys. Rev. B 45, 1742 (1992).

    Article  Google Scholar 

  111. E.V. Sukhorukov and D. Loss, Phys. Rev. B 59, 13054 (1999).

    Article  CAS  Google Scholar 

  112. R. C. Liu, B. Odom, Y. Yamamoto, and S. Tarucha, Nature 391, 263 (1998); M. Henny et al., Science 284, 296 (1999); W.D. Oliver et al., ibid, 299 (1999).

    Google Scholar 

  113. V. A. Khlus, Zh. Eksp. Teor. Fiz. 93, 2179 (1987).

    Google Scholar 

  114. J. König, H. Schoeller, and G. Schön, Phys. Rev. Lett. 178, 4482 (1997).

    Article  Google Scholar 

  115. D. Loss and P. Goldbart, Phys. Rev. B 45, 13544 (1992).

    Article  Google Scholar 

  116. O. Benson et al., Phys. Rev. Lett. 84, 2513 (2000); E. Moreau et al., Phys. Rev. Lett. 87, 183601 (2001).

    Google Scholar 

  117. G. Chen et al., Science 289, 1906 (2000).

    Article  CAS  Google Scholar 

  118. R. J. Luyken et al,Physica E 2, 704 (1998);

    Google Scholar 

  119. T. Lundstrom et al., Science 286, 2312 (1999).

    Article  CAS  Google Scholar 

  120. D. Gammon et al., Science 273, 87 (1996).

    Article  CAS  Google Scholar 

  121. B. Ohnesorge et al., Phys. Rev. B 54, 11532 (1996); E. Dekel et al., Phys. Rev. B 61, 11009 (2000).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burkard, G., Loss, D. (2002). Electron Spins in Quantum Dots as Qubits for Quantum Information Processing. In: Awschalom, D.D., Loss, D., Samarth, N. (eds) Semiconductor Spintronics and Quantum Computation. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05003-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05003-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07577-3

  • Online ISBN: 978-3-662-05003-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics