Advertisement

Electron Spins in Quantum Dots as Qubits for Quantum Information Processing

Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Coherent manipulation, filtering, and measurement of electronic spin in quantum dots and other nanostructures are new technologies which have promising applications both in conventional and in quantum information processing and transmission. We review the spintronics proposal for quantum computing, in which electron spins in quantum confined structures play the role of the quantum bits (qubits), and discuss the essential requirements for such an implementation. We describe several realizations of one- and twoqubit quantum gates and of state preparation and measurement, based on an all-electrical scheme to control the dynamics of spin. We discuss recently proposed schemes for using a single quantum dot as a spin filter and spin read-out device, and show how the decoherence time can be measured in a transport set-up. We address the issue of spin decoherence due to non-uniform hyperfine interactions with nuclei and show that for electrons confined to dots the spin decay is non-exponential. Finally, we discuss methods for producing and detecting the spin-entanglement of electronic EPR pairs, being an important resource for quantum communication.

Keywords

Electron Spin Resonance Exchange Coupling Quantum Gate Zeeman Splitting Rabi Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Prinz, Phys. Today 45(4), 58 (1995); Science 282, 1660 (1998).Google Scholar
  2. 2.
    S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).CrossRefGoogle Scholar
  3. 3.
    J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom, Science 277, 1284 (1997); J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998); D. D. Awschalom and J. M. Kikkawa, Phys. Today 52 (6), 33 (1999).CrossRefGoogle Scholar
  4. 4.
    R. Fiederling et al., Nature 402, 787 (1999).CrossRefGoogle Scholar
  5. 5.
    Y. Ohno et al., Nature 402, 790 (1999).CrossRefGoogle Scholar
  6. 6.
    J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, Science 292, 2458 (2001).CrossRefGoogle Scholar
  7. 7.
    D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998); condmat/9701055.Google Scholar
  8. 8.
    G. Burkard, H.-A. Engel, and D. Loss, Fortschr. Phys. 48, 965 (2000).CrossRefGoogle Scholar
  9. 9.
    A. Steane, Rep. Prog. Phys. 61, 117 (1998).Google Scholar
  10. 10.
    D. P. DiVincenzo, D. Loss, J. Magn. Magn. Mater. 200 202 (1999); condmat/9901137.Google Scholar
  11. 11.
    C. H. Bennett and D. P. DiVincenzo, Nature 404, 247 (2000).CrossRefGoogle Scholar
  12. 12.
    D. P. DiVincenzo, Phys. Rev. A 51, 1015 (1995).Google Scholar
  13. 13.
    P. W. Shor, in Proc. 35th Symposium on the Foundations of Computer Science, (IEEE Computer Society Press), 124 (1994).Google Scholar
  14. 14.
    L. K. Grover, Phys. Rev. Lett. 79, 325 (1997); ibid 79, 4709 (1997); 80, 4329 (1998).Google Scholar
  15. 15.
    J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995);C. Monroe et al, ibid 75, 4714 (1995).CrossRefGoogle Scholar
  16. 16.
    Q. A. Turchette et al., Phys. Rev. Lett. 75, 4710 (1995).CrossRefGoogle Scholar
  17. 17.
    D. Cory, A. Fahmy, and T. Havel, Proc. Nat. Acad. Sci. U.S.A. 94, 1634Google Scholar
  18. ); N. A. Gershenfeld and I. L. Chuang, Science 275, 350 (1997).Google Scholar
  19. 18.
    A. Shnirman, G. Schön, and Z. Hermon, Phys. Rev. Lett. 79, 2371 (1997); Y. Makhlin, G. Schön, and A. Shnirman, Phys. Rev. Lett. 85, 4578 (2000).CrossRefGoogle Scholar
  20. 19.
    D. V. Averin, Solid State Commun. 105, 659 (1998).CrossRefGoogle Scholar
  21. 20.
    L. B. Ioffe et al., Nature 398, 679 (1999).CrossRefGoogle Scholar
  22. 21.
    T. P. Orlando et al., Phys. Rev. B 60, 15398 (1999).CrossRefGoogle Scholar
  23. 22.
    V. Privman, I. D. Vagner, and G. Kventsel, Phys. Lett. A 239, 141 (1998).CrossRefGoogle Scholar
  24. 23.
    B. E. Kane, Nature 393, 133 (1998).CrossRefGoogle Scholar
  25. 24.
    C. H. W. Barnes, J. M. Shilton, A. M. Robinson, Phys. Rev. B 62, 8410 (2000).CrossRefGoogle Scholar
  26. 25.
    R. Vrijen et al., Phys. Rev. A 62, 012306 (2000).Google Scholar
  27. 26.
    J. Levy, Phys. Rev. A 64, 052306 (2001).Google Scholar
  28. 27.
    D. Bouwmeester et al., Nature 390, 575 (1997);CrossRefGoogle Scholar
  29. D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, Phys. Rev. Lett. 80, 1121 (1998).CrossRefGoogle Scholar
  30. 28.
    C. H. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993).CrossRefGoogle Scholar
  31. 29.
    A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).CrossRefGoogle Scholar
  32. 30.
    O. Gywat, G. Burkard, and D. Loss, cond-mat/0109223.Google Scholar
  33. 31.
    L. P. Kouwenhoven, G. Schön, and L. L. Sohn, Mesoscopic Electron Transport, NATO ASI Series E, Vol. 345, Kluwer Academic Publishers (1997).Google Scholar
  34. 32.
    S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L. P. Kouwenhoven, Phys. Rev. Lett. 77, 3613 (1996).CrossRefGoogle Scholar
  35. 33.
    F. R. Waugh et al., Phys. Rev. Lett. 75, 705 (1995);CrossRefGoogle Scholar
  36. C. Livermore et al., Science 274, 1332 (1996).CrossRefGoogle Scholar
  37. 34.
    T. H. Oosterkamp et al., Phys. Rev. Lett. 80, 4951 (1998).CrossRefGoogle Scholar
  38. 35.
    R. H. Blick et al., Phys. Rev. Lett. 80, 4032 (1998); ibid. 81, 689 (1998); T. H. Oosterkamp et al., Nature 395, 873 (1998);CrossRefGoogle Scholar
  39. I. J. Maasilta and V. J. Goldman, Phys. Rev. Lett. 84, 1776 (2000).CrossRefGoogle Scholar
  40. 36.
    J. A. Gupta, D. D. Awschalom, X. Peng, and A. P. Alivisatos, Phys. Rev. B 59, R10421 (1999).CrossRefGoogle Scholar
  41. 37.
    M. Flatte and J. Byers, Phys. Rev. Lett. 84, 4220 (2000).CrossRefGoogle Scholar
  42. 38.
    H.-A. Engel and D. Loss, Phys. Rev. Lett. 86, 4648 (2001).CrossRefGoogle Scholar
  43. 39.
    G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59, 2070 (1999).CrossRefGoogle Scholar
  44. 40.
    M. Dobers, K. v. Klitzing, J. Schneider, G. Weimann, and K. Ploog, Phys. Rev. Lett. 61, 1650 (1988).Google Scholar
  45. 41.
    D. C. Dixon, K. R. Wald, P. L. McEuen, and M. R. Melloch, Phys. Rev. B 56, 4743 (1997).CrossRefGoogle Scholar
  46. 42.
    A. V. Khaetskii and Y. V. Nazarov, Phys. Rev. B 61, 12639 (2000); Phys. Rev. B 64, 125316 (2001); A. V. Khaetskii, Physica E 10, 27 (2001).CrossRefGoogle Scholar
  47. 43.
    V. F. Gantmakher and Y. B. Levinson, Carrier scattering in metals and semiconductors, North-Holland, Amsterdam, Chapter 1 (1987).Google Scholar
  48. 44.
    A. V. Khaetskii, D. Loss, and L. I. Glazman, cond-mat/0201303.Google Scholar
  49. 45.
    D. P. DiVincenzo, G. Burkard, D. Loss, and E. Sukhorukov, in Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics,eds. I.O. Kulik and R. Ellialtoglu (NATO ASI), p. 399 (2000); see cond-mat/99112445.Google Scholar
  50. 46.
    A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999).CrossRefGoogle Scholar
  51. 47.
    M.-S. Choi, C. Bruder, and D. Loss, Phys. Rev. B 62, 13569 (2000).CrossRefGoogle Scholar
  52. 48.
    G. Burkard, D. Loss, D. P. DiVincenzo, and J. A. Smolin, Phys. Rev. B 60, 11404 (1999).CrossRefGoogle Scholar
  53. 49.
    J. Schliemann, D. Loss, and A. H. MacDonald, Phys. Rev. B 63, 085311 (2001).Google Scholar
  54. 50.
    P. W. Shor, Phys. Rev. A 52, R2493 (1995); A. M. Steane, Phys. Rev. Lett. 77, 793 (1996); D. P. DiVincenzo and P. W. Shor, ibid. 77, 3260 (1996); E. Knill and R. Laflamme, Phys. Rev. A 55, 900 (1997); D. Gottesman, ibid. 54, 1862 (1996).Google Scholar
  55. 51.
    J. Preskill, Proc. R. Soc. London Ser. A 454, 385 (1998); J. Preskill, in Introduction to Quantum Computation and Information, edited by H.-K. Lo, S. Popescu, and T. Spiller ( World Scientific, Singapore, 1998 ), pp. 213–269.CrossRefGoogle Scholar
  56. 52.
    L. Kouwenhoven and C. Marcus, private communication.Google Scholar
  57. 53.
    P. Recher, E.V. Sukhorukov, and D. Loss, Phys. Rev. Lett. 85, 1962 (2000).CrossRefGoogle Scholar
  58. 54.
    A. Barenco et al., Phys. Rev. A 52, 3457 (1995).CrossRefGoogle Scholar
  59. 55.
    X. Hu and S. Das Sarma, Phys. Rev. A 61, 062301 (2000).Google Scholar
  60. 56.
    G. Burkard, G. Seelig, and D. Loss, Phys. Rev. B 62, 2581 (2000).CrossRefGoogle Scholar
  61. 57.
    R. J. Luyken et al., Physica E 2, 704 (1998).CrossRefGoogle Scholar
  62. 58.
    D. G. Austing et al., Physica B 249–251, 206 (1998).CrossRefGoogle Scholar
  63. 59.
    K. V. Kavokin, Phys. Rev. B 64, 075305 (2001).Google Scholar
  64. 60.
    N. E. Bonesteel, D. Stepanenko, and D. P. DiVincenzo, Phys. Rev. Lett. 87, 207901 (2001).Google Scholar
  65. 61.
    G. Burkard and D. Loss, Phys. Rev. Lett. 88, 047903 (2002).Google Scholar
  66. 62.
    P. Recher, J. Levy, and D. Loss, in Macroscopic Quantum Coherence and Computing,eds. D. Averin, P. Silvestrini, (Plenum Press, NY, 2000); condmat/0009270.Google Scholar
  67. 63.
    P. W. Anderson, J. Phys. C 3, 2436 (1970).CrossRefGoogle Scholar
  68. 64.
    V. N. Golovach and D. Loss, cond-mat/0109155.Google Scholar
  69. 65.
    W. Izumida and O. Sakai, Phys. Rev. B 6210260 (2000), and references therein.Google Scholar
  70. 66.
    M. Eto, Y. Nazarov, Phys. Rev. B 64, 085322 (2001).Google Scholar
  71. 67.
    M. Pustilnik and L. I. Glazman, Phys. Rev. B 64, 045328 (2001).Google Scholar
  72. 68.
    M. Pustilnik and L. I. Glazman, Phys. Rev. Lett. 87, 216601 (2001).Google Scholar
  73. 69.
    E. L. Ivchenko, A. A. Kiselev, and M. Willander, Solid State Comm. 102, 375 (1997).CrossRefGoogle Scholar
  74. 70.
    G. Salis, Y. Kato, K. Ensslin, D. C. Driscoll, A. C. Gossard, and D. D. Awschalom, Nature 414, 619 (2001).CrossRefGoogle Scholar
  75. 71.
    D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K.B. Whaley, Nature 408, 339 (2000).CrossRefGoogle Scholar
  76. 72.
    P. C. Hammel, Z. Zhang, G. J. Moore, and M. L. Roukes, Journ. of Low Temp. Phys. 101, 59 (1995); J. A. Sidles, J. L. Garbini, K. L. Bruland, D. Rugar, O. Zueger, S. Hoen, and C. S. Yannoni, Rev. Mod. Phys. 67, 249 (1995).CrossRefGoogle Scholar
  77. 73.
    A. Peres, Quantum Theory: Concepts and Methods ( Kluwer, Dordrecht, 1993 ).Google Scholar
  78. 74.
    M. Devoret, D. Estève, and Ch. Urbina, Nature (London) 360, 547 (1992).CrossRefGoogle Scholar
  79. 75.
    D. V. Averin and Yu. V. Nazarov, in Single Charge Tunneling, eds. H. Grabert and M. H. Devoret, NATO ASI Series B, Vol. 294, Plenum Press, New York, 1992.Google Scholar
  80. 76.
    H.-A. Engel and D. Loss, Phys. Rev. B 62, 10238 (2000).CrossRefGoogle Scholar
  81. 77.
    H.-A. Engel and D. Loss, to be published in Phys. Rev. B, April 2002, condmat/0109470.Google Scholar
  82. 78.
    M. Ciorga et al., Phys. Rev. B 61, R16315 (2000).CrossRefGoogle Scholar
  83. 79.
    T. Fujisawa, Y. Tokura, and Y. Hirayama, Phys. Rev. B 63, R081304 (2001).Google Scholar
  84. 80.
    D. Loss and E.V. Sukhorukov, Phys. Rev. Lett. 84, 1035 (2000).CrossRefGoogle Scholar
  85. 81.
    G. Burkard, D. Loss, and E.V. Sukhorukov, Phys. Rev. B 61, R16303 (2000).CrossRefGoogle Scholar
  86. 82.
    J. Schliemann, J. I. Cirac, M. Kus, M. Lewenstein, and D. Loss, Phys. Rev. A 64,022303 (2001); quant-ph/0012094.Google Scholar
  87. 83.
    S. Lloyd, Phys. Rev. A 61, R010301 (1999).Google Scholar
  88. 84.
    A. K. Ekert and R. Jozsa, Rev. Mod. Phys. 68, 733 (1996).CrossRefGoogle Scholar
  89. 85.
    J. Ahn, T. C. Weinacht, and P. H. Bucksbaum, Science 287, 463 (2000).CrossRefGoogle Scholar
  90. 86.
    M. N. Leuenberger and D. Loss, Nature 410, 789 (2001).CrossRefGoogle Scholar
  91. 87.
    M. N. Leuenberger, D. Loss, M. Poggio, and D. D. Awschalom, to be published.Google Scholar
  92. 88.
    M. N. Leuenberger and D. Loss, Phys. Rev. B 61, 1286 (2000); ibid. 61, 12200 (2000).Google Scholar
  93. 89.
    G. Salis et al., Phys. Rev. Lett. 86, 2677 (2001). G. Salis, D. D. Awschalom, Y. Ohno, H. Ohno, Phys. Rev. B 64, 195304 (2001).Google Scholar
  94. 90.
    A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982); W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 81, 3563 (1998).CrossRefGoogle Scholar
  95. 91.
    J. R. Schrieffer, Theory of Superconductivity (Benjamin/Cummings, NY, 1964 ).Google Scholar
  96. 92.
    F. W. J. Hekking, L. I. Glazman, K. A. Matveev, and R. I. Shekhter, Phys. Rev. Lett. 70, 4138 (1993).CrossRefGoogle Scholar
  97. 93.
    P. Recher, E. V. Sukhorukov, and D. Loss, Phys. Rev. B 63, 165314 (2001).Google Scholar
  98. 94.
    S. Datta, Electronic Transport In Mesoscopic Systems (Cambridge University Press 1995), p. 260.Google Scholar
  99. 95.
    P. Recher and D. Loss, Journal of Superconductivity and Novel Magnetism 15, 49 (2002); P. Recher and D. Loss, cond-mat/0112298; for similar results, see also C. Bena et al., cond-mat/0202102.Google Scholar
  100. 96.
    A.F. Volkov, P.H.C. Magnée, B.J. van Wees, and T.M. Klapwijk, Physica C 242, 261 (1995).CrossRefGoogle Scholar
  101. 97.
    M. Kociak et al., Phys. Rev. Lett. 86, 2416 (2001).CrossRefGoogle Scholar
  102. 98.
    M. Bockrath et al., Nature 397, 598 (1999).CrossRefGoogle Scholar
  103. 99.
    H.J. Schulz, Phys. Rev. Lett. 64, 2831 (1990).CrossRefGoogle Scholar
  104. 100.
    R. Egger and A. Gogolin, Phys. Rev. Lett. 79, 5082 (1997).CrossRefGoogle Scholar
  105. 101.
    C. Kane, L. Balents, and M.P. Fisher, Phys. Rev. Lett. 79, 5086 (1997).CrossRefGoogle Scholar
  106. 102.
    G. D. Mahan, Many Particle Physics, 2nd Ed. ( Plenum, New York, 1993 ).Google Scholar
  107. 103.
    R. Loudon, Phys. Rev. A 58, 4904 (1998).Google Scholar
  108. 104.
    R. Hanbury Brown and R. Q. Twiss, Nature (London) 177, 27 (1956).CrossRefGoogle Scholar
  109. 105.
    M. Büttiker, Phys. Rev. Lett. 65, 2901 (1990); Phys. Rev. B 46, 12485 (1992).Google Scholar
  110. 106.
    T. Martin and R. Landauer, Phys. Rev. B 45, 1742 (1992).CrossRefGoogle Scholar
  111. 107.
    E.V. Sukhorukov and D. Loss, Phys. Rev. B 59, 13054 (1999).CrossRefGoogle Scholar
  112. 108.
    R. C. Liu, B. Odom, Y. Yamamoto, and S. Tarucha, Nature 391, 263 (1998); M. Henny et al., Science 284, 296 (1999); W.D. Oliver et al., ibid, 299 (1999).Google Scholar
  113. 109.
    V. A. Khlus, Zh. Eksp. Teor. Fiz. 93, 2179 (1987).Google Scholar
  114. 110.
    J. König, H. Schoeller, and G. Schön, Phys. Rev. Lett. 178, 4482 (1997).CrossRefGoogle Scholar
  115. 111.
    D. Loss and P. Goldbart, Phys. Rev. B 45, 13544 (1992).CrossRefGoogle Scholar
  116. 112.
    O. Benson et al., Phys. Rev. Lett. 84, 2513 (2000); E. Moreau et al., Phys. Rev. Lett. 87, 183601 (2001).Google Scholar
  117. 113.
    G. Chen et al., Science 289, 1906 (2000).CrossRefGoogle Scholar
  118. R. J. Luyken et al,Physica E 2, 704 (1998);Google Scholar
  119. T. Lundstrom et al., Science 286, 2312 (1999).CrossRefGoogle Scholar
  120. 115.
    D. Gammon et al., Science 273, 87 (1996).CrossRefGoogle Scholar
  121. 116.
    B. Ohnesorge et al., Phys. Rev. B 54, 11532 (1996); E. Dekel et al., Phys. Rev. B 61, 11009 (2000).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

There are no affiliations available

Personalised recommendations