Spin Condensates in Semiconductor Microcavities

Part of the NanoScience and Technology book series (NANO)


Direct-gap semiconductors interact extremely strongly with light, absorbing energy in the promotion of electrons into the conduction band. The lifetime of the photoexcited electrons is several nanoseconds, set by competing processes of radiative and non-radiative recombination. Of increasing interest in the last decade, is the phase of the photoexcited electrons (or the interband coherence) induced by the oscillating optical field (Fig. 6.1). The time for this phase memory to be lost is much shorter than the carrier lifetime, typically less than 100 fs in bulk materials at room temperature, and is controlled by the range of possible phase scattering events accessible to the carriers. By freezing out the lattice vibrations at low temperatures, and quantum confining the carriers in volumes smaller than their de Broglie wavelengths, it is possible to reduce the phase scattering. Such confinement produces quasi-atomic energy levels whose separation restricts the events that can cause phase scattering. However even in fully-confining semiconductor quantum dots at liquid helium temperatures (see Chap. 9), the phase decay is only slowed by a factor of 200 [1]. Thus although such quantum dot systems have been suggested as all-solid-state elements for quantum computing applications, they are still prone to dephasing events which cause errors.


Pump Power Quantum Well Probe Pulse Strong Coupling Regime Cavity Photon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.H. Bonadeo et al., Science 282 1473 (1998)CrossRefGoogle Scholar
  2. 2.
    F. Schmidt-Kaler G. Rempe and H. Walter, Phys. Rev. Lett. 64, 2783 (1990)CrossRefGoogle Scholar
  3. 3.
    M.O. Scully and M.S. Zubairy,Quantum Optics (CUP, Cambridge 1997 )Google Scholar
  4. 4.
    G. Khitrova et al.., Rev. Mod. Phys. 71, 1591 (1999)CrossRefGoogle Scholar
  5. 5.
    M.S. Skolnick, T.A. Fisher and D.M. Whittaker, Semicond. Sci. Tech 13, 645 (1998)CrossRefGoogle Scholar
  6. 6.
    G. Malpuech, A. Kavokin, A. DiCarlo and J.J. Baumberg, Phys. Rev. B 66 (2002)Google Scholar
  7. 7.
    F. Yura and E. Hanamura, Phys. Rev. B 50, 15457 (1994)CrossRefGoogle Scholar
  8. 8.
    B. Honerlage, R. Levy, J.B. Grun, C. Klingshirn, and K. Bohnert, Phys. Rep. 124, 161 (1985);CrossRefGoogle Scholar
  9. S. Savasta and R. Girlanda, Phys. Rev B 59, 15409 (1999)CrossRefGoogle Scholar
  10. 9.
    J.J.Hopfield and D.G. Thomas, Phys. Rev. 132, 563 (1963);CrossRefGoogle Scholar
  11. F. Evangelisti, F.U. Fishbach and A. Frova, Phys. Rev. B 9, 1516 (1974)CrossRefGoogle Scholar
  12. 10.
    L.V. Keldysh, `Macroscopic coherent states of excitons in semiconductors’. In Bose-Einstein Condensation. ed. by A. Griffin, D.W. Snoke, S. Stringari (CUP, Cambridge 1995 ) pp. 246–281Google Scholar
  13. 11.
    J.J. Baumberg, A.P. Heberle, A.V. Kavokin, M.R. Vladimirova, and K. Köhler, Phys. Rev. Lett. 80, 3567 (1998)CrossRefGoogle Scholar
  14. 12.
    P.G. Savvidis, J.J. Baumberg et al.., Phys. Rev. B 62, R13278 (2000)CrossRefGoogle Scholar
  15. 13.
    S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, Adv. in Phys. 38, 89 (1989)Google Scholar
  16. 14.
    S. Schmitt-Rink and D. S. Chemla, Phys. Rev. Lett. 57 2752, (1986)CrossRefGoogle Scholar
  17. 15.
    S. Schmitt-Rink, D. S. Chemla, and H. Haug, Phys. Rev. B 37, 941 (1988)CrossRefGoogle Scholar
  18. 16.
    H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore 1993 )Google Scholar
  19. 17.
    F. Jahnke, M. Kira and S.W. Koch, Z. Phys. B Cond. Mat 104, 559 (1997)Google Scholar
  20. 18.
    A.I. Tartakowskii et al., Phys.Rev. B 62, R2283 (2000)CrossRefGoogle Scholar
  21. 19.
    A. Ishikawa C. Weisbuch, M. Nishioka and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992)CrossRefGoogle Scholar
  22. 20.
    P. Senellart and J. Bloch, Phys. Rev. Lett. 82, 1233 (1999)CrossRefGoogle Scholar
  23. 21.
    R. Houdré, C. Weisbuch, R.P. Stanley, U. Oesterle, and M. Ilegems, Phys. Rev. Lett. 85, 2793 (2000)CrossRefGoogle Scholar
  24. 22.
    Le Si Dang et al., Phys. Rev. Lett. 81, 3920 (1998)Google Scholar
  25. 23.
    R. Huang, F. Tassone, Y. Yamamoto, Phys. Rev. B61, R7854 (2000)CrossRefGoogle Scholar
  26. 24.
    F. Tassone and Y. Yamamoto, Phys. Rev. B59, 10830 (1999)CrossRefGoogle Scholar
  27. 25.
    M.Kuwata-Gonokami et al., Phys. Rev. Lett. 79, 1341 (1997)Google Scholar
  28. 26.
    J.J. Baumberg, `Coherent Control and Switching’. In Semiconductor Quantum Optoelectronics. ed by A. Miller, M. Ebrahimzadeh and D.M. Finlayson(IOP, Bristol, 1999 ) pp. 100–117Google Scholar
  29. 27.
    F. Quochi et al., Phys. Rev. Lett. 80, 4733 (1998)CrossRefGoogle Scholar
  30. 28.
    J. Erland et al., phys. stat. sol. (b)221, 115 (2000)Google Scholar
  31. 29.
    G. Dasbach et al., Phys. Rev. B 62, 13076 (2000)CrossRefGoogle Scholar
  32. 30.
    F. Boeuf et al., Phys. Rev. B 62 R2279 (2000)CrossRefGoogle Scholar
  33. 31.
    D. Baxter, Semiconductor Microcavities PhD thesis ( Sheffield University, Department of Physics, 1998 )Google Scholar
  34. 32.
    P.G. Savvidis, J.J. Baumberg et al., Phys. Rev. Lett. 84, 1547 (2000)CrossRefGoogle Scholar
  35. 33.
    A. Imamoglu et al., Phys. Rev. A 53 1996, (1996)CrossRefGoogle Scholar
  36. 34.
    B. Sermage P. Senellart, J. Bloch and J.Y. Marzin, Phys. Rev. B 62, R16263 (2000)CrossRefGoogle Scholar
  37. 35.
    C. Ciuti et al., Phys. Rev. B 62, R4825 (2000)CrossRefGoogle Scholar
  38. 36.
    P.G. Savvidis, C. Ciuti, J.J. Baumberg et al., Phys. Rev. B 64, 75311 (2001)CrossRefGoogle Scholar
  39. 37.
    O.W. Greenberg and R.C. Hilborn, Phys. Rev. Lett 83, 4460 (1999)CrossRefGoogle Scholar
  40. 38.
    R.M. Stevenson et al., Phys.Rev.Lett. 85, 3680 (2000)CrossRefGoogle Scholar
  41. 39.
    J.J. Baumberg et al., Phys. Rev. B62, R16247 (2000)CrossRefGoogle Scholar
  42. 40.
    P.R. Eastham and P.B. Littlewood, arXiv,cond-mat/0102009 (2001)Google Scholar
  43. 41.
    U. Oesterle R. Houdre R.P. Stanley, S. Pau and M. Ilegems, Phys. Rev. B 55, R4867 (1997)CrossRefGoogle Scholar
  44. 42.
    T. Freixanet et al., Phys. Rev. B 61 7233 (2000)CrossRefGoogle Scholar
  45. 43.
    M. Kasevich and S. Chu, Phys. Rev. Lett. 67, 181 (1991)CrossRefGoogle Scholar
  46. 44.
    P. Lagoudakis et al., Phys. Rev. Phys. Rev. B, 66 (2002)Google Scholar
  47. 45.
    P.G. Savvidis et al., Phys. Rev. B, 65, 73309 (2002)CrossRefGoogle Scholar
  48. 46.
    N.B. Simpson, K. Dholakia, L. Allen and M.J. Padgett, Opt. Lett. 22 52 (1997)CrossRefGoogle Scholar
  49. 47.
    A.M. Fox, J.J. Baumberg et al., Phys. Rev. Lett. 74, 1728 (1994)CrossRefGoogle Scholar
  50. 48.
    J.G Rarity and P.R.Tapster, Phil. Trans. Roy. Soc. Lond. A 355, 2267 (1997) and references thereinGoogle Scholar
  51. 49.
    Z.Y. Ou and L. Mandel, Phys. Rev. Lett. 61, 50 (1988)CrossRefGoogle Scholar
  52. 50.
    S.Savasta S and R. Girlanda, Phys. Rev. B 59, 15409 (1999)CrossRefGoogle Scholar
  53. 51.
    G. Messin et al., J. Phys. Cond. Matt. 11, 6069 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

There are no affiliations available

Personalised recommendations