Skip to main content

Spin Condensates in Semiconductor Microcavities

  • Chapter
Semiconductor Spintronics and Quantum Computation

Part of the book series: NanoScience and Technology ((NANO))

  • 803 Accesses

Abstract

Direct-gap semiconductors interact extremely strongly with light, absorbing energy in the promotion of electrons into the conduction band. The lifetime of the photoexcited electrons is several nanoseconds, set by competing processes of radiative and non-radiative recombination. Of increasing interest in the last decade, is the phase of the photoexcited electrons (or the interband coherence) induced by the oscillating optical field (Fig. 6.1). The time for this phase memory to be lost is much shorter than the carrier lifetime, typically less than 100 fs in bulk materials at room temperature, and is controlled by the range of possible phase scattering events accessible to the carriers. By freezing out the lattice vibrations at low temperatures, and quantum confining the carriers in volumes smaller than their de Broglie wavelengths, it is possible to reduce the phase scattering. Such confinement produces quasi-atomic energy levels whose separation restricts the events that can cause phase scattering. However even in fully-confining semiconductor quantum dots at liquid helium temperatures (see Chap. 9), the phase decay is only slowed by a factor of 200 [1]. Thus although such quantum dot systems have been suggested as all-solid-state elements for quantum computing applications, they are still prone to dephasing events which cause errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.H. Bonadeo et al., Science 282 1473 (1998)

    Article  CAS  Google Scholar 

  2. F. Schmidt-Kaler G. Rempe and H. Walter, Phys. Rev. Lett. 64, 2783 (1990)

    Article  Google Scholar 

  3. M.O. Scully and M.S. Zubairy,Quantum Optics (CUP, Cambridge 1997 )

    Google Scholar 

  4. G. Khitrova et al.., Rev. Mod. Phys. 71, 1591 (1999)

    Article  Google Scholar 

  5. M.S. Skolnick, T.A. Fisher and D.M. Whittaker, Semicond. Sci. Tech 13, 645 (1998)

    Article  CAS  Google Scholar 

  6. G. Malpuech, A. Kavokin, A. DiCarlo and J.J. Baumberg, Phys. Rev. B 66 (2002)

    Google Scholar 

  7. F. Yura and E. Hanamura, Phys. Rev. B 50, 15457 (1994)

    Article  CAS  Google Scholar 

  8. B. Honerlage, R. Levy, J.B. Grun, C. Klingshirn, and K. Bohnert, Phys. Rep. 124, 161 (1985);

    Article  Google Scholar 

  9. S. Savasta and R. Girlanda, Phys. Rev B 59, 15409 (1999)

    Article  CAS  Google Scholar 

  10. J.J.Hopfield and D.G. Thomas, Phys. Rev. 132, 563 (1963);

    Article  CAS  Google Scholar 

  11. F. Evangelisti, F.U. Fishbach and A. Frova, Phys. Rev. B 9, 1516 (1974)

    Article  CAS  Google Scholar 

  12. L.V. Keldysh, `Macroscopic coherent states of excitons in semiconductors’. In Bose-Einstein Condensation. ed. by A. Griffin, D.W. Snoke, S. Stringari (CUP, Cambridge 1995 ) pp. 246–281

    Google Scholar 

  13. J.J. Baumberg, A.P. Heberle, A.V. Kavokin, M.R. Vladimirova, and K. Köhler, Phys. Rev. Lett. 80, 3567 (1998)

    Article  CAS  Google Scholar 

  14. P.G. Savvidis, J.J. Baumberg et al.., Phys. Rev. B 62, R13278 (2000)

    Article  CAS  Google Scholar 

  15. S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, Adv. in Phys. 38, 89 (1989)

    Google Scholar 

  16. S. Schmitt-Rink and D. S. Chemla, Phys. Rev. Lett. 57 2752, (1986)

    Article  CAS  Google Scholar 

  17. S. Schmitt-Rink, D. S. Chemla, and H. Haug, Phys. Rev. B 37, 941 (1988)

    Article  Google Scholar 

  18. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore 1993 )

    Google Scholar 

  19. F. Jahnke, M. Kira and S.W. Koch, Z. Phys. B Cond. Mat 104, 559 (1997)

    CAS  Google Scholar 

  20. A.I. Tartakowskii et al., Phys.Rev. B 62, R2283 (2000)

    Article  Google Scholar 

  21. A. Ishikawa C. Weisbuch, M. Nishioka and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992)

    Article  CAS  Google Scholar 

  22. P. Senellart and J. Bloch, Phys. Rev. Lett. 82, 1233 (1999)

    Article  CAS  Google Scholar 

  23. R. Houdré, C. Weisbuch, R.P. Stanley, U. Oesterle, and M. Ilegems, Phys. Rev. Lett. 85, 2793 (2000)

    Article  Google Scholar 

  24. Le Si Dang et al., Phys. Rev. Lett. 81, 3920 (1998)

    Google Scholar 

  25. R. Huang, F. Tassone, Y. Yamamoto, Phys. Rev. B61, R7854 (2000)

    Article  CAS  Google Scholar 

  26. F. Tassone and Y. Yamamoto, Phys. Rev. B59, 10830 (1999)

    Article  CAS  Google Scholar 

  27. M.Kuwata-Gonokami et al., Phys. Rev. Lett. 79, 1341 (1997)

    Google Scholar 

  28. J.J. Baumberg, `Coherent Control and Switching’. In Semiconductor Quantum Optoelectronics. ed by A. Miller, M. Ebrahimzadeh and D.M. Finlayson(IOP, Bristol, 1999 ) pp. 100–117

    Google Scholar 

  29. F. Quochi et al., Phys. Rev. Lett. 80, 4733 (1998)

    Article  CAS  Google Scholar 

  30. J. Erland et al., phys. stat. sol. (b)221, 115 (2000)

    Google Scholar 

  31. G. Dasbach et al., Phys. Rev. B 62, 13076 (2000)

    Article  CAS  Google Scholar 

  32. F. Boeuf et al., Phys. Rev. B 62 R2279 (2000)

    Article  CAS  Google Scholar 

  33. D. Baxter, Semiconductor Microcavities PhD thesis ( Sheffield University, Department of Physics, 1998 )

    Google Scholar 

  34. P.G. Savvidis, J.J. Baumberg et al., Phys. Rev. Lett. 84, 1547 (2000)

    Article  CAS  Google Scholar 

  35. A. Imamoglu et al., Phys. Rev. A 53 1996, (1996)

    Article  Google Scholar 

  36. B. Sermage P. Senellart, J. Bloch and J.Y. Marzin, Phys. Rev. B 62, R16263 (2000)

    Article  CAS  Google Scholar 

  37. C. Ciuti et al., Phys. Rev. B 62, R4825 (2000)

    Article  CAS  Google Scholar 

  38. P.G. Savvidis, C. Ciuti, J.J. Baumberg et al., Phys. Rev. B 64, 75311 (2001)

    Article  Google Scholar 

  39. O.W. Greenberg and R.C. Hilborn, Phys. Rev. Lett 83, 4460 (1999)

    Article  CAS  Google Scholar 

  40. R.M. Stevenson et al., Phys.Rev.Lett. 85, 3680 (2000)

    Article  CAS  Google Scholar 

  41. J.J. Baumberg et al., Phys. Rev. B62, R16247 (2000)

    Article  CAS  Google Scholar 

  42. P.R. Eastham and P.B. Littlewood, arXiv,cond-mat/0102009 (2001)

    Google Scholar 

  43. U. Oesterle R. Houdre R.P. Stanley, S. Pau and M. Ilegems, Phys. Rev. B 55, R4867 (1997)

    Article  CAS  Google Scholar 

  44. T. Freixanet et al., Phys. Rev. B 61 7233 (2000)

    Article  CAS  Google Scholar 

  45. M. Kasevich and S. Chu, Phys. Rev. Lett. 67, 181 (1991)

    Article  CAS  Google Scholar 

  46. P. Lagoudakis et al., Phys. Rev. Phys. Rev. B, 66 (2002)

    Google Scholar 

  47. P.G. Savvidis et al., Phys. Rev. B, 65, 73309 (2002)

    Article  Google Scholar 

  48. N.B. Simpson, K. Dholakia, L. Allen and M.J. Padgett, Opt. Lett. 22 52 (1997)

    Article  CAS  Google Scholar 

  49. A.M. Fox, J.J. Baumberg et al., Phys. Rev. Lett. 74, 1728 (1994)

    Article  Google Scholar 

  50. J.G Rarity and P.R.Tapster, Phil. Trans. Roy. Soc. Lond. A 355, 2267 (1997) and references therein

    Google Scholar 

  51. Z.Y. Ou and L. Mandel, Phys. Rev. Lett. 61, 50 (1988)

    Article  Google Scholar 

  52. S.Savasta S and R. Girlanda, Phys. Rev. B 59, 15409 (1999)

    Article  CAS  Google Scholar 

  53. G. Messin et al., J. Phys. Cond. Matt. 11, 6069 (1999)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baumberg, J.J. (2002). Spin Condensates in Semiconductor Microcavities. In: Awschalom, D.D., Loss, D., Samarth, N. (eds) Semiconductor Spintronics and Quantum Computation. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05003-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05003-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07577-3

  • Online ISBN: 978-3-662-05003-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics