Skip to main content

Optical Manipulation, Transport and Storage of Spin Coherence in Semiconductors

  • Chapter
Semiconductor Spintronics and Quantum Computation

Part of the book series: NanoScience and Technology ((NANO))

Abstract

The drive to build a framework for coherent semiconductor spintronic devices provides a strong motivation for understanding the coherent evolution of spin states in semiconductors [1,2]. The fundamental aim in this context is to discover regimes in which carefully prepared quantum states based upon spin can evolve coherently long enough to allow the storage, manipulation and transport of quantum information in devices. Such devices might exploit, for instance, the interference between two coherently-occupied spin states whose time variation occurs at a frequency ΔE/h, where ΔE is their energy separation. Since typical spin splittings in semiconductors are in the range of meV, the rapidly varying oscillations of a classical observable such as the spin orientation (magnetization) can occur at GHz-THz frequencies, providing the basis for ultrafast devices. Another possibility is that this quantum interference may actually be used as part of a calculation within the context of quantum computing algorithms [3]. It is hence crucial to develop experimental tools that probe spin coherence in semiconductors and that allow one to map out schemes for its manipulation, storage and transport. The previous chapter formulated the theoretical foundations underlying coherent spin dynamical phenomena in semiconductors and introduced specific mechanisms that may be responsible for spin relaxation and spin decoherence, pointing out the important physical distinctions between longitudinal and transverse spin relaxation times (T 1 and T 2, respectively) [4]. We note that it is the latter timescale that is of direct relevance to coherent spin devices and hence we focus on experimental techniques that probe the transverse spin relaxation time in semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Wolf et al., Science 294, 1488 (2001).

    Article  CAS  Google Scholar 

  2. D. D. Awschalom and J. M. Kikkawa, Phys. Today 52, 33 (1999).

    Article  CAS  Google Scholar 

  3. D. Divincenzo, Science 270, 255 (1995).

    Article  CAS  Google Scholar 

  4. W. H. Lau, J. T. Olesberg, and M. E. Flatté, Phys. Rev. B (2001).

    Google Scholar 

  5. D. D. Awschalom, J. M. Halbout, S. von Molnar, T. Siegrist, F. Holtzberg, Phys. Rev. Lett. 55, 1128 (1985).

    Article  CAS  Google Scholar 

  6. J.J. Baumberg, D.D. Awschalom, N. Samarth, H. Luo, J.K. Furdyna, Phys. Rev.Lett. 72, 717 (1994).

    Article  CAS  Google Scholar 

  7. T. Ostreich, K. Schonhammer and L. J. Sham, Phys. Rev. Lett. 75, 2554 (1995).

    Article  Google Scholar 

  8. S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, Phys. Rev. B 56, 7574 (1997); S. A. Crooker, J. J. Baumberg, F. Flack, N. Samarth, and D. D. Awschalom, Phys. Rev. Lett. (1996).

    Google Scholar 

  9. J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom, Science 277, 1284 (1997).

    Article  CAS  Google Scholar 

  10. J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998).

    Article  CAS  Google Scholar 

  11. J. M. Kikkawa and D. D. Awschalom, Nature (London) 397, 139 (1999).

    Article  CAS  Google Scholar 

  12. I. Malajovich, J. M. Kikkawa, D. D. Awschalom, J. J. Berry, and N. Samarth, Phys. Rev. Lett. 84, 1015 (2000).

    Article  CAS  Google Scholar 

  13. I. Malajovich, J. J. Berry, N. Samarth, and D. D. Awschalom, Nature (London) 411, 770 (2001).

    Article  CAS  Google Scholar 

  14. B. Beschoten, E. Johnston-Halperin, D.K. Young, M. Poggio, J.E. Grimaldi, S. Keller, S.P. DenBaars, U.K. Mishra, E.L. Hu, and D.D. Awschalom, Phys. Rev. B 63, R121202 (2001).

    Google Scholar 

  15. J. M. Kikkawa and D. D. Awschalom, Science 287, 473 (2000).

    Article  CAS  Google Scholar 

  16. J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, Science 292, 2458 (2001).

    Article  CAS  Google Scholar 

  17. A.P. Heberle, J.J. Baumberg, K. K.hler., Phys. Rev. Lett. 75, 2598 (1995).

    Article  CAS  Google Scholar 

  18. S. Bar-Ad and I. Bar-Joseph, Phys. Rev. Lett. 68, 349 (1992).

    Article  CAS  Google Scholar 

  19. R.M. Hannak, M. Oestreich, A.P. Heberle, W.W. Ruhle, K. Kohler, Solid State Comm. 93, 313 (1995).

    Article  CAS  Google Scholar 

  20. M. Oestreich and W.W. Ruhle, Phys. Rev. Lett. 74, 2315 (1995);

    Article  CAS  Google Scholar 

  21. M. Oestreich, et al., Phys. Rev. B 53, 7911 (1996).

    Article  CAS  Google Scholar 

  22. T. Amand, et al., Phys. Rev. Lett. 78, 1355 (1997).

    Article  CAS  Google Scholar 

  23. R. J. Elliot, Phys. Rev. 96, 266 (1954).

    Article  Google Scholar 

  24. M. I. D’yakonov and V. I. Perel’, Soy. Phys. JETP 33, 1053 (1971); Sov. Phys. Solid State 13, 3023 (1972).

    Google Scholar 

  25. Optical Orientation, Modern Problems in Condensed Matter Science, edited by F. Meier and B. P. Zachachrenya (North-Holland, Amsterdam, 1984 ), Vol. 8.

    Google Scholar 

  26. G. Bir, A. Aronov, and G. Pikus, Zh. Eksp. Teor. Fiz. 69 1382 (1975) [Sov. Phys. JETP 42, 705 (1976)].

    Google Scholar 

  27. A. Abragam, The Principles of Nuclear Magnetism ( Clarendon, Oxford, 1961 ).

    Google Scholar 

  28. M. J. Yang et al., Phys. Rev. B 47, 6807 (1993).

    Article  CAS  Google Scholar 

  29. G. Fishman and G. Lampel, Phys. Rev. B 16, 820 (1977);

    Article  CAS  Google Scholar 

  30. K. Zerrouati et al., Phys. Rev. B 37, 1334 (1988).

    Article  CAS  Google Scholar 

  31. A. G. Aronov, G. E. Pikus, and A. N. Titkov, Zh. Eksp. Teor. Fiz. 84, 1170 (1983) [Soy. Phys. JETP 57, 680 (1983)].

    Google Scholar 

  32. P. Boguslawski, Solid State Commun. 33, 389 (1980).

    Article  CAS  Google Scholar 

  33. S Nakamura, Science 281, 956 (1998); S. F. Chichibu et al., Appl. Phys. Lett. 74, 1460 (1999).

    Google Scholar 

  34. B. Heying, et al., Appl. Phys. Lett. 68, 643 (1996); P.J. Hansen, et al., Appl. Phys. Lett. 72, 2247 (1998).

    Article  Google Scholar 

  35. D. C. Look and J. R. Sizelove, Phys. Rev. Lett. 82, 1237 (1999).

    Article  CAS  Google Scholar 

  36. H. M. Ng et al., Appl. Phys. Lett. 73, 821 (1998); N.G. Weinmann et al., J. Appl. Phys. 83, 3656 (1998).

    Article  Google Scholar 

  37. W. E. Carlos, J. A. Freitas Jr., M. Asif Kahn, D. T. Olson, and J. N. Kuzina, Phys. Rev. B 48, 17878 (1993).

    Article  CAS  Google Scholar 

  38. A. P. Alivisatos, Science 271, 933 (1996).

    Article  CAS  Google Scholar 

  39. D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).

    Article  CAS  Google Scholar 

  40. C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).

    Article  CAS  Google Scholar 

  41. J.A. Gupta, X.Peng, A.P. Alivisatos and D.D. Awschalom, Phys. Rev. B 59, R10421 (1999).

    Article  CAS  Google Scholar 

  42. X. Marie et al., Phys. Rev. B 60, 5811 (1999).

    Article  CAS  Google Scholar 

  43. J.A. Gupta, Al.L. Efros and D.D. Awschalom, in preparation.

    Google Scholar 

  44. M. E. Flatté and J. M. Byers, Phys. Rev. Lett. 84, 4220 (2000).

    Article  Google Scholar 

  45. D. D. Awschalom and N. Samarth, J. Mag. Magn. Mater. 200 (1999).

    Google Scholar 

  46. J. M. Kikkawa, I. P. Smorchkova, N, Samarth, and D. D. Awschalom, Physica E 2, 394 (1998).

    Article  CAS  Google Scholar 

  47. N. Samarth and J. K. Furdyna, Phys. Rev. B 37, 9227 (1988);

    Article  CAS  Google Scholar 

  48. S. Rajagopalan, Ph. D. Thesis, Purdue University (1988).

    Google Scholar 

  49. J. Stühler et al., Phys. Rev. Lett. 74, 2567 (1995).

    Article  Google Scholar 

  50. G. Lampel, Phys. Rev. Lett. 20, 491 (1968).

    Article  CAS  Google Scholar 

  51. G Salis et al., Phys. Rev. Lett. 86, 2677 (2001)

    Article  CAS  Google Scholar 

  52. G. Salis et al., Phys. Rev. B 64, 195304 (2001).

    Google Scholar 

  53. J.A. Gupta and D.D. Awschalom, Phys. Rev. B 63, 085303 (2001).

    Google Scholar 

  54. J. Preskill, quant-ph/9712048 at http://xxx.lanl.gov (1997).

    Google Scholar 

  55. C. Cohen-Tannoudji and J. Dupont-Roc, Phys. Rev. A 5, 968 (1972).

    Article  Google Scholar 

  56. M. Rosatzin, D. Suter, and J. Mlynek, Phys. Rev. A 42, 1839 (1990).

    Article  CAS  Google Scholar 

  57. R. K. Kawakami et al., Science 294, 131 (2001).

    Article  CAS  Google Scholar 

  58. R. K. Kawakami et al., Appl. Phys. Lett. 77, 2379 (2000).

    Article  CAS  Google Scholar 

  59. H. Ohno, Science 281, 951 (1998).

    Article  CAS  Google Scholar 

  60. M. Tanaka et al., Appl. Phys. Lett. 65, 1964 (1994).

    Article  CAS  Google Scholar 

  61. D. Paget, G. Lampel, B. Sapoval, and V. I. Safarov, Phys. Rev. B 15, 5780 (1977).

    Article  CAS  Google Scholar 

  62. R. J. Epstein et al., Phys. Rev. B 65, 121202 (2002).

    Google Scholar 

  63. G. Salis et al., Nature (London) 414, 619 (2001).

    Article  CAS  Google Scholar 

  64. C. Weisbuch and C. Hermann, Phys. Rev. B 15, 816 (1977).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Awschalom, D.D., Samarth, N. (2002). Optical Manipulation, Transport and Storage of Spin Coherence in Semiconductors. In: Awschalom, D.D., Loss, D., Samarth, N. (eds) Semiconductor Spintronics and Quantum Computation. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05003-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05003-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07577-3

  • Online ISBN: 978-3-662-05003-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics