Advertisement

Spin Dynamics in Semiconductors

Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Recent advances in probing and manipulating spin dynamics in semiconductors suggest a new semiconducting electronics technology based on spin [1–3]. These advances include ultrafast all-optical manipulation of the spins of conduction electrons [4–9], core electrons of magnetic impurities [5], and nuclei [10–12], as well as all-electrical generation of optical orientation [13–15] and the development of a new class of III-V ferromagnetic semiconductors [16,17] (See Chaps. 1, 2, 3 and 5.) Thus the material properties of semiconductors essential to spintronic devices appear to be taking shape.

Keywords

Spin Polarization Spin Dynamics Spin Splitting Spin Transport Spin Coherence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).CrossRefGoogle Scholar
  2. 2.
    . D. D. Awschalom and J. M. Kikkawa, Phys. Today 52, 33 (June 1999).CrossRefGoogle Scholar
  3. 3.
    . L. Sham, Science, 277, 1258 (1997).CrossRefGoogle Scholar
  4. 4.
    . J. Wagner, H. Schneider, D. Richards, A. Fischer, and K. Ploog, Phys. Rev. B 47, 4786 (1993).CrossRefGoogle Scholar
  5. 5.
    . S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, Phys. Rev. B 56, 7574 (1997).CrossRefGoogle Scholar
  6. 6.
    . J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom, Science 277, 1284 (1997).Google Scholar
  7. 7.
    . J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998).CrossRefGoogle Scholar
  8. 8.
    . J. M. Kikkawa and D. D. Awschalom, Nature (London) 397, 139 (1999).CrossRefGoogle Scholar
  9. 9.
    . J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, Science 292, 2458 (2001).CrossRefGoogle Scholar
  10. 10.
    . J. M. Kikkawa and D. D. Awschalom, Science 287, 473 (2000).CrossRefGoogle Scholar
  11. 11.
    . A. Malinowski and R. T. Harley, Solid State Commun. 114, 419 (2000).CrossRefGoogle Scholar
  12. 12.
    . G. Salis, D. T. Fuchs, J. M. Kikkawa, D. D. Awschalom, Y. Ohno, and H. Ohno, Phys. Rev. Lett. 86, 2677 (2001).CrossRefGoogle Scholar
  13. 13.
    R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, andL. W. Molenkamp, Nature 402, 787 (1999).Google Scholar
  14. 14.
    . Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature 402, 790 (1999).CrossRefGoogle Scholar
  15. 15.
    . B. T. Jonker, Y. D. Park, B. R. Bennett, H. D. Cheong, G. Kioseoglou, and A. Petrou, Phys. Rev. B 62, 8180 (2000).CrossRefGoogle Scholar
  16. 16.
    . H. Ohno, N. Akiba, F. Matsukura, A. Shen, K. Ohtani, and Y. Ohno, Appl. Phys. Lett. 73, 363 (1998); H. Ohno, Science 281, 951 (1998).CrossRefGoogle Scholar
  17. 17.
    . H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996); T. Hayashi, M. Tanaka, T. Nishinaga, H. Shimada, H. Tsuchiya, and Y. Otuka, J. Cryst. Growth 175, 1063 (1997); A. Van Esch, L. Van Bockstal, J. De Boeck, G. Verbanck, A. S. van Steenbergen, P. J. Wellmann, B. Grietens, R. Bogaerts, F. Herlach, and G. Borghs, Phys. Rev. B 56, 13103 (1997).Google Scholar
  18. 18.
    . D. DiVincenzo, Science 270, 255 (1995).CrossRefGoogle Scholar
  19. 19.
    . D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).CrossRefGoogle Scholar
  20. 20.
    . B. E. Kane, Nature 393, 133 (1998).CrossRefGoogle Scholar
  21. 21.
    . A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss,M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999).CrossRefGoogle Scholar
  22. 22.
    . G. A. Prinz, Science 282, 1660 (1998); ibid 283, 330 (1999).Google Scholar
  23. 23.
    . Principles of Magnetic Resonance, C. P. Slichter, Springer, 3rd edition, New York, 1992.Google Scholar
  24. 24.
    G. L. Bir, A. G. Aronov, and G. E. Pikus, Zh. Eksp. Teor. Fiz. 69 1382 (1975)[Sov. Phys. JETP 42 705 (1976)].Google Scholar
  25. 25.
    . G. Fishman and G. Lampel, Phys. Rev. B 16, 820 (1977).CrossRefGoogle Scholar
  26. 26.
    Optical Orientation,edited by F. Meier and B. P. Zakharchenya (North-Holland, Amsterdam, 1984), Vol.8.Google Scholar
  27. 27.
    Y. Yafet in Solid State Physics Vol. 14, (Academic Press, New York, 1963)Google Scholar
  28. 28.
    . G. Dresselhaus, Phys. Rev. 100, 580 (1955).CrossRefGoogle Scholar
  29. 29.
    . M. I. D’yakonov and V. I. Perel’, Sov. Phys. JETP 33, 1053 (1971); Sov. Phys. Solid State 13, 3023 (1972).Google Scholar
  30. 30.
    . R. Terauchi, Y. Ohno, T. Adachi, A. Sato, F. Matsukura, A. Tackeuchi, and H. Ohno, Jpn. J. Appl. Phys. 38, Pt. 1, No. 4B., 2549 (1999).Google Scholar
  31. 31.
    . P. Y. Yu and M. Cardona, Fundamentals of semiconductors, Physics and materials properties, 2nd ed. ( Springer, New York 1999 ).CrossRefGoogle Scholar
  32. 32.
    . see, e. g. Group Theory and Quantum Mechanics, M. Tinkham, McGraw-Hill, New York, 1964.Google Scholar
  33. 33.
    . E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960); Yu. A. Bychov and E. I. Rashba, J. Phys. C 17, 6093 (1984).Google Scholar
  34. 34.
    . P. Pfeffer and W. Zawadzki, Phys. Rev. B 52, R14332 (1995); P. Pfeffer, ibid55, R7359 (1997); P. Pfeffer and W. Zawadzki, ibid 59, R5312 (1999).Google Scholar
  35. 35.
    . E. A. de Andrada e Silva, Phys. Rev. B 46, 1921 (1992).Google Scholar
  36. 36.
    . E. A. de Andrada e Silva, G. C. La Rocca, and F. Bassani, Phys. Rev. B 50, 8523 (1994).CrossRefGoogle Scholar
  37. 37.
    . N. S. Averkiev and L. E. Golub, Phys. Rev. B 60, 15582 (1999).CrossRefGoogle Scholar
  38. 37.
    . N. S. Averkiev and L. E. Golub, Phys. Rev. B 60, 15582 (1999).CrossRefGoogle Scholar
  39. 39.
    . O. Krebs and P. Voisin, Phys. Rev. Lett. 77, 1829 (1996).CrossRefGoogle Scholar
  40. 40.
    . P. V. Santos, P. Etchegoin, M. Cardona, B. Brar, and H. Kroemer, Phys. Rev. B 50, 8746 (1994).CrossRefGoogle Scholar
  41. 41.
    . L. Vervoort, R. Ferreira, and P. Voisin, Phys. Rev. B 56, R12744 (1997).CrossRefGoogle Scholar
  42. 42.
    . E. L. Ivchenko, A. Yu. Kaminski, and U. Rössler, Phys. Rev. B 54, 5852 (1996).CrossRefGoogle Scholar
  43. 43.
    . L. Vervoort, R. Ferreira, and P. Voisin, Semicond. Sci. Technol. 14, 227 (1999).CrossRefGoogle Scholar
  44. 44.
    . J. T. Olesberg, W. H. Lau, M. E. Flatté, C. Yu, E. Altunkaya, E. M. Shaw, T. C. Hasenberg, and T. F. Boggess, Phys. Rev. B 64, 201301(R) (2001).Google Scholar
  45. 45.
    . A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, and H. Morkoç, Phys. Rev. Lett. 56, 2748 (1986).CrossRefGoogle Scholar
  46. 46.
    . S. Schmitt-Rink and D. S. Chemla, Phys. Rev. Lett 57, 2752 (1986).CrossRefGoogle Scholar
  47. 47.
    . A. V. Khaetskii and Y. V. Nazarov, Phys. Rev. B 61, 12639 (2000).CrossRefGoogle Scholar
  48. 48.
    . J. S. Sandhu, A. P. Heberle, J. J. Baumberg, and J. R. A. Cleaver, Phys. Rev. Lett. 86, 2150 (2001).CrossRefGoogle Scholar
  49. 49.
    . W. H. Lau, J. T. Olesberg, and M. E. Flatté, Phys. Rev. B 64, 161301(R) (2001).Google Scholar
  50. 50.
    . J. T. Olesberg, Ph. D. thesis, University of Iowa, 1999.Google Scholar
  51. 51.
    . L. Wissinger, U. Rössler, R. Winkler, B. Jusserand, D. Richards, Phys. Rev. B 58, 15375 (1998).CrossRefGoogle Scholar
  52. 52.
    . R. Winkler and U. Rössler, Phys. Rev. B 48, 8918 (1993).CrossRefGoogle Scholar
  53. 53.
    . A. Bournel, P. Dollfus, E. Cassan, and P. Hesto, Appl. Phys. Lett. 77, 2346 (2000).CrossRefGoogle Scholar
  54. 54.
    . O. Madelung, Semiconductors-Basic Data, 2nd ed. ( Springer, New York, 1996 ).CrossRefGoogle Scholar
  55. 55.
    . M. Cardona, N. E. Christensen, and G. Fasol, Phys. Rev B 38, 1806 (1988).CrossRefGoogle Scholar
  56. 56.
    . T. F. Boggess, J. T. Olesberg, C. Yu, M. E. Flatté, and W. H. Lau, Appl. Phys. Lett. 77, 1333 (2000).CrossRefGoogle Scholar
  57. 57.
    . M. I. D’yakonov and V. Yu. Kachorovskii, Sov. Phys. Semicond 20, 110 (1986).Google Scholar
  58. 58.
    . E. L. Ivchenko and G. E. Pikus, Superlattices and Other Heterostructures, 2nd ed. ( Springer, New York, 1997 ).CrossRefGoogle Scholar
  59. 59.
    The experimental results have been adjusted from [30], for the authors defined an effective spin flip time for a single spin, Ts = 2T1, and plotted their results for Ts. The DK calculation (dot-dashed line) is of T1, so in addition to the errors in trends, the discrepancy in the magnitude of T1 (using our values of the confinement energy) is about a factor of 4 in Fig. 4.11a,b.Google Scholar
  60. 60.
    . A. Tackeuchi, O. Wada, and Y. Nishikawa, Appl. Phys. Lett. ’TO, 1131 (1997); R. Tackeuchi, T. Kuroda, S. Muto, Y. Nishikawa, and O. Wada, Jpn. J. Appl. Phys. 38, Pt. 1, No. 8, 4680 (1999).CrossRefGoogle Scholar
  61. 61.
    . K. C. Hall, S. W. Leonard, H. M. van Driel, A. R. Kost, E. Selvig, and D. H. Chow, Appl. Phys. Lett. 75, 3665 (1999); 75, 4156 (1999).Google Scholar
  62. 62.
    . M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985); M. Johnson and R. H. Silsbee, Phys. Rev. B 35, 4959 (1987); M. Johnson and R. H. Silsbee, Phys. Rev. B 37, 5312 (1988).Google Scholar
  63. 63.
    . P. C. van Son, H. van Kempen, and P. Wyder, Phys. Rev. Lett. 58, 2271 (1987).CrossRefGoogle Scholar
  64. 64.
    . T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).CrossRefGoogle Scholar
  65. 65.
    . P. M. Levy and S. Zhang, Phys. Rev. Lett. 795110 (1997).CrossRefGoogle Scholar
  66. 66.
    . A. R. Cameron, P. Riblet, and A. Miller, Phys. Rev. Lett. 76, 4793 (1996).CrossRefGoogle Scholar
  67. 67.
    . J. R. Haynes and W. Shockley, Phys. Rev. 81, 835 (1951).CrossRefGoogle Scholar
  68. 68.
    . D. Hägele, M. Oestreich, W. W. Rühle, N. Nestle, and K. Eberl, Appl. Phys. Lett. 73, 1580 (1998).CrossRefGoogle Scholar
  69. 69.
    . S. S. P. Parkin, R. Bhadra, and K. P. Roche, Phys. Rev. Lett. 66, 2152 (1991).CrossRefGoogle Scholar
  70. 70.
    . M. E. Flatté and J. M. Byers, Phys. Rev. Lett. 84, 4220 (2000).CrossRefGoogle Scholar
  71. 71.
    . B. König, U. Zehnder, D. R. Yakovlev, W. Ossau, T. Gerhard, M. Keim, A. Waag, and G. Landwehr, Phys. Rev. B 60, 2653 (1999).CrossRefGoogle Scholar
  72. 72.
    . W. van Roosbroeck, Bell. Syst. Tech. J. 29, 560 (1950); Phys. Rev. 91, 282 (1953).CrossRefGoogle Scholar
  73. 73.
    . See, e.g., Semiconductors, R. A. Smith, Cambridge University Press, New York, 1978.Google Scholar
  74. 74.
    . J. F. Young and H. M. van Driel, Phys. Rev. B 26, 2147 (1982).CrossRefGoogle Scholar
  75. 75.
    . I. D’Amico and G. Vignale, Europhys. Lett. 55, 566 (2001).CrossRefGoogle Scholar
  76. 76.
    Z. G. Yu and M. E. Flatté, cond-mat/0201425.Google Scholar
  77. 77.
    . J. C. Egues, Phys. Rev. Lett. 80, 4578 (1998).CrossRefGoogle Scholar
  78. 78.
    . Y. Guo, B.-L. Gu, Z.-Q. Li, J.-Z. Yu, and Y. Kawazoe, J. Appl. Phys. 83, 4545 (1998).CrossRefGoogle Scholar
  79. 79.
    . M. E. Flatté and G. Vignale, Appl. Phys. Lett. 78, 1273 (2001).CrossRefGoogle Scholar
  80. 80.
    . I. Zutic, J. Fabian, and S. Das Sarma, Phys. Rev. B 64, 121201 (2001).Google Scholar
  81. 81.
    . I. Zutic, J. Fabian, and S. Das Sarma, Phys. Rev. Lett. 88, 066603 (2002).Google Scholar
  82. 82.
    . G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, Phys. Rev. B 62, R4790 (2000).CrossRefGoogle Scholar
  83. 83.
    . E. I. Rashba, Phys. Rev. B 62, R16267 (2000).Google Scholar
  84. 84.
    . D. L. Smith and R. N. Silver, Phys. Rev. B 64, 045323 (2001).Google Scholar
  85. 85.
    . P. R. Hammar, B. R. Bennett, M. J. Yang, and M. Johnson, Phys. Rev. Lett. 83, 203 (1999)CrossRefGoogle Scholar
  86. 86.
    . H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H.-P. Schönherr, and K. H. Ploog, Phys. Rev. Lett. 87, 016601 (2001).Google Scholar
  87. 87.
    . A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, Appl. Phys. Lett. 80, 1240 (2002).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

There are no affiliations available

Personalised recommendations