Skip to main content

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Recent advances in probing and manipulating spin dynamics in semiconductors suggest a new semiconducting electronics technology based on spin [1–3]. These advances include ultrafast all-optical manipulation of the spins of conduction electrons [4–9], core electrons of magnetic impurities [5], and nuclei [10–12], as well as all-electrical generation of optical orientation [13–15] and the development of a new class of III-V ferromagnetic semiconductors [16,17] (See Chaps. 1, 2, 3 and 5.) Thus the material properties of semiconductors essential to spintronic devices appear to be taking shape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).

    Article  Google Scholar 

  2. . D. D. Awschalom and J. M. Kikkawa, Phys. Today 52, 33 (June 1999).

    Article  CAS  Google Scholar 

  3. . L. Sham, Science, 277, 1258 (1997).

    Article  Google Scholar 

  4. . J. Wagner, H. Schneider, D. Richards, A. Fischer, and K. Ploog, Phys. Rev. B 47, 4786 (1993).

    Article  Google Scholar 

  5. . S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, Phys. Rev. B 56, 7574 (1997).

    Article  Google Scholar 

  6. . J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom, Science 277, 1284 (1997).

    Google Scholar 

  7. . J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998).

    Article  Google Scholar 

  8. . J. M. Kikkawa and D. D. Awschalom, Nature (London) 397, 139 (1999).

    Article  Google Scholar 

  9. . J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, Science 292, 2458 (2001).

    Article  Google Scholar 

  10. . J. M. Kikkawa and D. D. Awschalom, Science 287, 473 (2000).

    Article  Google Scholar 

  11. . A. Malinowski and R. T. Harley, Solid State Commun. 114, 419 (2000).

    Article  Google Scholar 

  12. . G. Salis, D. T. Fuchs, J. M. Kikkawa, D. D. Awschalom, Y. Ohno, and H. Ohno, Phys. Rev. Lett. 86, 2677 (2001).

    Article  Google Scholar 

  13. R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, andL. W. Molenkamp, Nature 402, 787 (1999).

    Google Scholar 

  14. . Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature 402, 790 (1999).

    Article  Google Scholar 

  15. . B. T. Jonker, Y. D. Park, B. R. Bennett, H. D. Cheong, G. Kioseoglou, and A. Petrou, Phys. Rev. B 62, 8180 (2000).

    Article  Google Scholar 

  16. . H. Ohno, N. Akiba, F. Matsukura, A. Shen, K. Ohtani, and Y. Ohno, Appl. Phys. Lett. 73, 363 (1998); H. Ohno, Science 281, 951 (1998).

    Article  Google Scholar 

  17. . H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996); T. Hayashi, M. Tanaka, T. Nishinaga, H. Shimada, H. Tsuchiya, and Y. Otuka, J. Cryst. Growth 175, 1063 (1997); A. Van Esch, L. Van Bockstal, J. De Boeck, G. Verbanck, A. S. van Steenbergen, P. J. Wellmann, B. Grietens, R. Bogaerts, F. Herlach, and G. Borghs, Phys. Rev. B 56, 13103 (1997).

    Google Scholar 

  18. . D. DiVincenzo, Science 270, 255 (1995).

    Article  Google Scholar 

  19. . D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).

    Article  Google Scholar 

  20. . B. E. Kane, Nature 393, 133 (1998).

    Article  Google Scholar 

  21. . A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss,M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999).

    Article  Google Scholar 

  22. . G. A. Prinz, Science 282, 1660 (1998); ibid 283, 330 (1999).

    Google Scholar 

  23. . Principles of Magnetic Resonance, C. P. Slichter, Springer, 3rd edition, New York, 1992.

    Google Scholar 

  24. G. L. Bir, A. G. Aronov, and G. E. Pikus, Zh. Eksp. Teor. Fiz. 69 1382 (1975)[Sov. Phys. JETP 42 705 (1976)].

    Google Scholar 

  25. . G. Fishman and G. Lampel, Phys. Rev. B 16, 820 (1977).

    Article  Google Scholar 

  26. Optical Orientation,edited by F. Meier and B. P. Zakharchenya (North-Holland, Amsterdam, 1984), Vol.8.

    Google Scholar 

  27. Y. Yafet in Solid State Physics Vol. 14, (Academic Press, New York, 1963)

    Google Scholar 

  28. . G. Dresselhaus, Phys. Rev. 100, 580 (1955).

    Article  Google Scholar 

  29. . M. I. D’yakonov and V. I. Perel’, Sov. Phys. JETP 33, 1053 (1971); Sov. Phys. Solid State 13, 3023 (1972).

    Google Scholar 

  30. . R. Terauchi, Y. Ohno, T. Adachi, A. Sato, F. Matsukura, A. Tackeuchi, and H. Ohno, Jpn. J. Appl. Phys. 38, Pt. 1, No. 4B., 2549 (1999).

    Google Scholar 

  31. . P. Y. Yu and M. Cardona, Fundamentals of semiconductors, Physics and materials properties, 2nd ed. ( Springer, New York 1999 ).

    Book  Google Scholar 

  32. . see, e. g. Group Theory and Quantum Mechanics, M. Tinkham, McGraw-Hill, New York, 1964.

    Google Scholar 

  33. . E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960); Yu. A. Bychov and E. I. Rashba, J. Phys. C 17, 6093 (1984).

    Google Scholar 

  34. . P. Pfeffer and W. Zawadzki, Phys. Rev. B 52, R14332 (1995); P. Pfeffer, ibid55, R7359 (1997); P. Pfeffer and W. Zawadzki, ibid 59, R5312 (1999).

    Google Scholar 

  35. . E. A. de Andrada e Silva, Phys. Rev. B 46, 1921 (1992).

    Google Scholar 

  36. . E. A. de Andrada e Silva, G. C. La Rocca, and F. Bassani, Phys. Rev. B 50, 8523 (1994).

    Article  Google Scholar 

  37. . N. S. Averkiev and L. E. Golub, Phys. Rev. B 60, 15582 (1999).

    Article  Google Scholar 

  38. . N. S. Averkiev and L. E. Golub, Phys. Rev. B 60, 15582 (1999).

    Article  Google Scholar 

  39. . O. Krebs and P. Voisin, Phys. Rev. Lett. 77, 1829 (1996).

    Article  Google Scholar 

  40. . P. V. Santos, P. Etchegoin, M. Cardona, B. Brar, and H. Kroemer, Phys. Rev. B 50, 8746 (1994).

    Article  Google Scholar 

  41. . L. Vervoort, R. Ferreira, and P. Voisin, Phys. Rev. B 56, R12744 (1997).

    Article  Google Scholar 

  42. . E. L. Ivchenko, A. Yu. Kaminski, and U. Rössler, Phys. Rev. B 54, 5852 (1996).

    Article  Google Scholar 

  43. . L. Vervoort, R. Ferreira, and P. Voisin, Semicond. Sci. Technol. 14, 227 (1999).

    Article  Google Scholar 

  44. . J. T. Olesberg, W. H. Lau, M. E. Flatté, C. Yu, E. Altunkaya, E. M. Shaw, T. C. Hasenberg, and T. F. Boggess, Phys. Rev. B 64, 201301(R) (2001).

    Google Scholar 

  45. . A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, and H. Morkoç, Phys. Rev. Lett. 56, 2748 (1986).

    Article  Google Scholar 

  46. . S. Schmitt-Rink and D. S. Chemla, Phys. Rev. Lett 57, 2752 (1986).

    Article  Google Scholar 

  47. . A. V. Khaetskii and Y. V. Nazarov, Phys. Rev. B 61, 12639 (2000).

    Article  Google Scholar 

  48. . J. S. Sandhu, A. P. Heberle, J. J. Baumberg, and J. R. A. Cleaver, Phys. Rev. Lett. 86, 2150 (2001).

    Article  Google Scholar 

  49. . W. H. Lau, J. T. Olesberg, and M. E. Flatté, Phys. Rev. B 64, 161301(R) (2001).

    Google Scholar 

  50. . J. T. Olesberg, Ph. D. thesis, University of Iowa, 1999.

    Google Scholar 

  51. . L. Wissinger, U. Rössler, R. Winkler, B. Jusserand, D. Richards, Phys. Rev. B 58, 15375 (1998).

    Article  Google Scholar 

  52. . R. Winkler and U. Rössler, Phys. Rev. B 48, 8918 (1993).

    Article  Google Scholar 

  53. . A. Bournel, P. Dollfus, E. Cassan, and P. Hesto, Appl. Phys. Lett. 77, 2346 (2000).

    Article  Google Scholar 

  54. . O. Madelung, Semiconductors-Basic Data, 2nd ed. ( Springer, New York, 1996 ).

    Book  Google Scholar 

  55. . M. Cardona, N. E. Christensen, and G. Fasol, Phys. Rev B 38, 1806 (1988).

    Article  Google Scholar 

  56. . T. F. Boggess, J. T. Olesberg, C. Yu, M. E. Flatté, and W. H. Lau, Appl. Phys. Lett. 77, 1333 (2000).

    Article  Google Scholar 

  57. . M. I. D’yakonov and V. Yu. Kachorovskii, Sov. Phys. Semicond 20, 110 (1986).

    Google Scholar 

  58. . E. L. Ivchenko and G. E. Pikus, Superlattices and Other Heterostructures, 2nd ed. ( Springer, New York, 1997 ).

    Book  Google Scholar 

  59. The experimental results have been adjusted from [30], for the authors defined an effective spin flip time for a single spin, Ts = 2T1, and plotted their results for Ts. The DK calculation (dot-dashed line) is of T1, so in addition to the errors in trends, the discrepancy in the magnitude of T1 (using our values of the confinement energy) is about a factor of 4 in Fig. 4.11a,b.

    Google Scholar 

  60. . A. Tackeuchi, O. Wada, and Y. Nishikawa, Appl. Phys. Lett. ’TO, 1131 (1997); R. Tackeuchi, T. Kuroda, S. Muto, Y. Nishikawa, and O. Wada, Jpn. J. Appl. Phys. 38, Pt. 1, No. 8, 4680 (1999).

    Article  Google Scholar 

  61. . K. C. Hall, S. W. Leonard, H. M. van Driel, A. R. Kost, E. Selvig, and D. H. Chow, Appl. Phys. Lett. 75, 3665 (1999); 75, 4156 (1999).

    Google Scholar 

  62. . M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985); M. Johnson and R. H. Silsbee, Phys. Rev. B 35, 4959 (1987); M. Johnson and R. H. Silsbee, Phys. Rev. B 37, 5312 (1988).

    Google Scholar 

  63. . P. C. van Son, H. van Kempen, and P. Wyder, Phys. Rev. Lett. 58, 2271 (1987).

    Article  Google Scholar 

  64. . T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).

    Article  Google Scholar 

  65. . P. M. Levy and S. Zhang, Phys. Rev. Lett. 795110 (1997).

    Article  Google Scholar 

  66. . A. R. Cameron, P. Riblet, and A. Miller, Phys. Rev. Lett. 76, 4793 (1996).

    Article  Google Scholar 

  67. . J. R. Haynes and W. Shockley, Phys. Rev. 81, 835 (1951).

    Article  Google Scholar 

  68. . D. Hägele, M. Oestreich, W. W. Rühle, N. Nestle, and K. Eberl, Appl. Phys. Lett. 73, 1580 (1998).

    Article  Google Scholar 

  69. . S. S. P. Parkin, R. Bhadra, and K. P. Roche, Phys. Rev. Lett. 66, 2152 (1991).

    Article  Google Scholar 

  70. . M. E. Flatté and J. M. Byers, Phys. Rev. Lett. 84, 4220 (2000).

    Article  Google Scholar 

  71. . B. König, U. Zehnder, D. R. Yakovlev, W. Ossau, T. Gerhard, M. Keim, A. Waag, and G. Landwehr, Phys. Rev. B 60, 2653 (1999).

    Article  Google Scholar 

  72. . W. van Roosbroeck, Bell. Syst. Tech. J. 29, 560 (1950); Phys. Rev. 91, 282 (1953).

    Article  Google Scholar 

  73. . See, e.g., Semiconductors, R. A. Smith, Cambridge University Press, New York, 1978.

    Google Scholar 

  74. . J. F. Young and H. M. van Driel, Phys. Rev. B 26, 2147 (1982).

    Article  Google Scholar 

  75. . I. D’Amico and G. Vignale, Europhys. Lett. 55, 566 (2001).

    Article  Google Scholar 

  76. Z. G. Yu and M. E. Flatté, cond-mat/0201425.

    Google Scholar 

  77. . J. C. Egues, Phys. Rev. Lett. 80, 4578 (1998).

    Article  Google Scholar 

  78. . Y. Guo, B.-L. Gu, Z.-Q. Li, J.-Z. Yu, and Y. Kawazoe, J. Appl. Phys. 83, 4545 (1998).

    Article  Google Scholar 

  79. . M. E. Flatté and G. Vignale, Appl. Phys. Lett. 78, 1273 (2001).

    Article  Google Scholar 

  80. . I. Zutic, J. Fabian, and S. Das Sarma, Phys. Rev. B 64, 121201 (2001).

    Google Scholar 

  81. . I. Zutic, J. Fabian, and S. Das Sarma, Phys. Rev. Lett. 88, 066603 (2002).

    Google Scholar 

  82. . G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, Phys. Rev. B 62, R4790 (2000).

    Article  Google Scholar 

  83. . E. I. Rashba, Phys. Rev. B 62, R16267 (2000).

    Google Scholar 

  84. . D. L. Smith and R. N. Silver, Phys. Rev. B 64, 045323 (2001).

    Google Scholar 

  85. . P. R. Hammar, B. R. Bennett, M. J. Yang, and M. Johnson, Phys. Rev. Lett. 83, 203 (1999)

    Article  Google Scholar 

  86. . H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H.-P. Schönherr, and K. H. Ploog, Phys. Rev. Lett. 87, 016601 (2001).

    Google Scholar 

  87. . A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, Appl. Phys. Lett. 80, 1240 (2002).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flatté, M.E., Byers, J.M., Lau, W.H. (2002). Spin Dynamics in Semiconductors. In: Awschalom, D.D., Loss, D., Samarth, N. (eds) Semiconductor Spintronics and Quantum Computation. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05003-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05003-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07577-3

  • Online ISBN: 978-3-662-05003-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics