Skip to main content

Theory of Exciton Dephasing in Semiconductor Quantum Dots

  • Chapter
Semiconductor Quantum Dots

Part of the book series: NanoScience and Technology ((NANO))

  • 1258 Accesses

Abstract

A resonant optical excitation creates an excited state population and also induces an optical polarization. Dynamics of this optical excitation is characterized by relaxation of the population as well as decay of the induced optical polarization. In lower dimensional semiconductors, electronic confinement leads to qualitative changes in population relaxation, including spontaneous emission and exciton-phonon scattering, as shown in extensive recent studies [1]. These population relaxation processes are expected to contribute to dephasing with a dephasing rate given by half the population decay rate. Pure dephasing processes that do not involve population or energy relaxation of excitons can also contribute to dephasing. Pure dephasing, which is a well-established concept for atomic systems, remains yet to be investigated in lower-dimensional semiconductors due to a lack of direct comparison between dephasing and population relaxation and between theory and experiment. Studies of pure dephasing processes in lower-dimensional semiconductors will renew and deepen our understanding of dephasing of collective excitations in solids, although several seminal studies were done on the exciton dephasing in quantum well (QW) structures [2–6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example, Confined Electrons and Photons, New Physics and Devices, ed. by E. Burstein, C. Weisbuch (Plenum, New York, 1995);

    Google Scholar 

  2. Microcrystalline and Nanocrystalline Semiconductors, Materials Res. Soc. Symp. Proc. Vol. 358, eds. R.W. Collins, C.C. Tsai, M. Hirose, F. Koch, L. Brus (Materials Research Society, Pittsburgh 1995)

    Google Scholar 

  3. J. Hegarty, M.D. Sturge: J. Opt. Soc. Am. B 2, 1143 (1985)

    Article  CAS  Google Scholar 

  4. M.D. Webb, S.T. Cundiff, D.G. Steel: Phys. Rev. B 43, 12658 (1991)

    Article  Google Scholar 

  5. L. Schultheis, A. Honold, J. Kuhl, K. Köhler, C.W. Tu: Phys. Rev. B 34, 9027 (1986)

    Article  CAS  Google Scholar 

  6. A. Honold, L. Schultheis, J. Kuhl, C.W. Tu: J. Opt. Soc. Am. B 4, 210 (1987)

    Google Scholar 

  7. T. Takagahara: Phys. Rev. B 32, 7013 (1985);

    Article  CAS  Google Scholar 

  8. T. Takagahara: J. Lumin. 44, 347 (1989)

    Article  CAS  Google Scholar 

  9. H.F. Hess, E. Betzig, T.D. Harris, L.N. Pfeiffer, K.W. West: Science 264, 1740 (1994)

    Article  CAS  Google Scholar 

  10. K. Brunner, G. Abstreiter, G. Böhm, G. Trônkle, G. Weimann: Phys. Rev. Lett., 73, 1138 (1994)

    Article  CAS  Google Scholar 

  11. D. Gammon, E.S. Snow, B.V. Shanabrook, D.S. Katzer, D. Park: Science 273, 87 (1996);

    Article  CAS  Google Scholar 

  12. D. Gammon, E.S. Snow, B.V. Shanabrook, D.S. Katzer, D. Park: Phys. Rev. Lett. 76, 3005 (1996)

    Article  CAS  Google Scholar 

  13. X. Fan, T. Takagahara, J.E. Cunningham, H. Wang: Solid State Commun. 108, 857 (1998)

    Article  CAS  Google Scholar 

  14. K. Huang, A. Rhys: Proc. Roy. Soc. (London) A 204, 406 (1950)

    Article  CAS  Google Scholar 

  15. C.B. Duke, G.D. Mahan: Phys. Rev. 139, A1965 (1965)

    Article  Google Scholar 

  16. R. Kubo, Y. Toyozawa: Prog. Theor. Phys. 13, 160 (1955)

    Article  Google Scholar 

  17. R.W. Schoenlein, D.M. Mittleman, J.J. Shiang, A.P. Alivisatos, C.V. Shank: Phys. Rev. Lett. 70, 1014 (1993)

    Article  CAS  Google Scholar 

  18. T. Itoh, M. Furumiya: J. Lumin. 48–49, 704 (1991)

    Article  Google Scholar 

  19. H. Benisty, CM. Sotomayor-Torres, C. Weisbuch: Phys. Rev. B 44, 10945 (1991)

    Article  Google Scholar 

  20. U. Bockelmann: Phys. Rev. B 48, 17637 (1993)

    Article  CAS  Google Scholar 

  21. T. Takagahara: J. Lumin. 70, 129 (1996);

    Article  CAS  Google Scholar 

  22. T. Takagahara: Phys. Rev. Lett. 71, 3577 (1993), and references therein

    Article  CAS  Google Scholar 

  23. A. Blacha, H. Presting, M. Cardona: Phys. Status Solidi B 126, 11 (1984)

    Article  CAS  Google Scholar 

  24. Physics of Group IV Elements and III-V Compounds, Landolt-Börnstein, Vol. 17a, ed. by O. Madelung, M. Schulz, H. Weiss (Springer, Berlin 1982)

    Google Scholar 

  25. R. Kubo: In: Fluctuation, Relaxation and Resonance in Magnetic Systems, ed. by D. ter Haar, (Oliver and Boyd, Edinburgh 1962)

    Google Scholar 

  26. T. Takagahara, E. Hanamura, R. Kubo: J. Phys. Soc. Japan 43, 802, 811, 1522 (1977)

    Article  CAS  Google Scholar 

  27. T. Takagahara: Phys. Rev. B 31, 6552 (1985)

    Article  CAS  Google Scholar 

  28. T. Takagahara: Phys. Rev. B 47, 4569 (1993)

    Article  Google Scholar 

  29. K. Takemoto, B.-R. Hyun, Y. Masumoto: Solid State Commun. 144, 521 (2000)

    Article  Google Scholar 

  30. R. Kuribayashi, K. Inoue, K. Sakoda, V.A. Tsekhomskii, A.V. Baranov: Phys. Rev. B 57, R15084 (1998)

    Article  CAS  Google Scholar 

  31. A.L. Efros, M. Rosen, M. Kuno, M. Nirmal, D.J. Norris, M. Bawendi: Phys. Rev. B 54, 4843 (1996); Detailed calculation was done here, including the electron-hole exchange interaction and the effect of non-spherical shape. The typical energy splitting is about 20 meV for a 20-É-radius spherical CdSe quantum dot

    Article  CAS  Google Scholar 

  32. A.E.H. Love: A Treatise on the Mathematical Theory of Elasticity (Dover, New York 1944)

    Google Scholar 

  33. A. Tamura, K. Higeta, T. Ichinokawa: J. Phys. C 15, 4975 (1982)

    Article  CAS  Google Scholar 

  34. T. Takagahara: Phys. Rev. B 60, 2638 (1999)

    Article  CAS  Google Scholar 

  35. H. Gotoh, H. Ando, H. Kamada, A. Chavez-Pirson, J. Temmyo: Appl. Phys. Lett. 72, 1341 (1998)

    Article  CAS  Google Scholar 

  36. N.H. Bonadeo, G. Chen, D. Gammon, D. Park, D.S. Katzer, D.G. Steel: Tech. Digest of Quantum Electronics and Laser Science Conf (QELS ’99, Baltimore 1999) QTuC5, p. 48

    Google Scholar 

  37. H. Kamada, H. Gotoh, H. Ando, J. Temmyo, T. Tamamura: Phys. Rev. B 60, 5791 (1999)

    Article  CAS  Google Scholar 

  38. M. Ikezawa, Y. Masumoto: Phys. Rev. B 61, 12662 (2000)

    Article  CAS  Google Scholar 

  39. See, for example, Dynamical Processes in Disordered Systems, Materials Science Forum Vol. 50, ed. by W.M. Yen (Trans Tech Publications, Switzerland 1989);

    Google Scholar 

  40. Optical Spectroscopy of Glasses, ed. by I. Zschokke (D. Reidel Publishing Company, Dordrecht 1986)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takagahara, T. (2002). Theory of Exciton Dephasing in Semiconductor Quantum Dots. In: Masumoto, Y., Takagahara, T. (eds) Semiconductor Quantum Dots. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05001-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05001-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07675-6

  • Online ISBN: 978-3-662-05001-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics