Computably Enumerable Instantaneous Codes

  • Cristian S. Calude
Part of the Texts in Theoretical Computer Science An EATCS Series book series (TTCS)


In this chapter — which is basically technical — we present two main tools used to design Chaitin computers and consequently to establish upper bounds: the extension of the Kraft condition (see Theorem 2.8) to arbitrary c.e. sets and relativized computation. New formulae, closely analogous to expressions in classical information theory, are derived.


Computable Function Code Perfection Minimal Program Universal Computer Prefix Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

History of Results

  1. [141]
    A. Church. On the concept of a random sequence, Bull. Amer. Math. Soc. 46 (1940), 130–135.MathSciNetCrossRefGoogle Scholar
  2. [81]
    C. Calude, C. Grozea. Kraft-Chaitin inequality revisited, J. UCS 2 (1996), 306–310.MathSciNetMATHGoogle Scholar
  3. [92]
    C. Calude, E. Kurta. On Kraft-Chaitin inequality, Rev. Roumaine Math. Pures Appl. 35 (1990), 597–604.MathSciNetMATHGoogle Scholar
  4. [354]
    A. M. Sâlâgean-Mandache. A geometrical proof of Kraft-Chaitin theorem, An. Univ. Bucure,ti Mat. 39/40 (1990/91), 3 Matematicâ-Informaticâ, 90–97.Google Scholar
  5. [355]
    A. Salomaa. Computation and Automata, Cambridge University Press, Cambridge, 1985.MATHGoogle Scholar
  6. [415]
    N. K. Vereshchagin. Kolmogorov Complexity, Universität Würzburg, 1998, 116 pp, Scholar
  7. [118]
    G. J. Chaitin. Algorithmic information theory, IBM J. Res. Dey. 21 (1977), 350–359, 496. (Reprinted in: [122], 44–58.)Google Scholar
  8. [121]
    G. J. Chaitin. Algorithmic Information Theory, Cambridge University Press, Cambridge, 1987 (3rd printing 1990 ).Google Scholar
  9. [208]
    W. L. Gewirtz. Investigations in the theory of descriptive complexity, Report NSO-5, Courant Institute of Mathematical Sciences, New York University, 1974, 60 pp.Google Scholar
  10. [113]
    G. J. Chaitin. Information-theoretic limitations of formal systems, J. Assoc. Comput. Mach. 21 (1974), 403–424. (Reprinted in: [122], 113–128.)Google Scholar
  11. [199]
    P. Gâcs. On the symmetry of algorithmic information, Soy. Math. Dokl. 15 (1974), 1477–1480; correction, ibid. 15 (1974), 1480.Google Scholar
  12. [203]
    P. Gâcs. Lecture Notes on Descriptional Complexity and Randomness, Boston University, 1988, 62 pp.Google Scholar
  13. [455]
    A. Zvonkin, L. A. Levin. The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms, Usp. Mat. Nauk 156 (1970), 85–127.MathSciNetGoogle Scholar
  14. [64]
    C. Calude, C. Câmpeanu. Are binary codings universal?, Complexity 1 (1996), 47–50.Google Scholar
  15. [216]
    C. Grozea. Free-extendible prefix-free sets and an extension of the Kraft-Chaitin theorem, J. UCS 6 (2000), 130–135.MathSciNetGoogle Scholar
  16. [99]
    C. S. Calude, I. Tomescu. Optimum extendible prefix codes, J. UCS 3 (1997), 1167–1179.MathSciNetMATHGoogle Scholar
  17. [87]
    C. S. Calude, H. Ishihara, T. Yamaguchi. Minimal programs are almost optimal, Int. J. Found. Comput. Sci. 12, 4 (2001), 479489.Google Scholar
  18. [221]
    D. Hammer. Complexity Inequalities, Wissenschaft and Technik Verlag, Berlin, 1998.Google Scholar
  19. [78]
    C. S. Calude, M. J. Dinneen, K. Svozil. Reflections on quantum computing, Complexity 6, 1 (2000), 35–37.MathSciNetCrossRefGoogle Scholar
  20. [173]
    M. Denker, M. W. Woyczyríski, B. Ycart. Introductory Statistics and Random Phenomena: Uncertainty, Complexity, and Chaotic Behavior in Engineering and Science, Birkhäuser, Boston, 1998.Google Scholar
  21. [174]
    M. Detlefsen. Gödel’s theorems, in E. Craig (ed.). Routledge Encyclopedia of Philosophy, Routledge, London, Vol. 4 (1998), 106119.Google Scholar
  22. [193]
    J. Ford. How random is a random coin toss?, Phys. Today 36 (1983), 40–47.CrossRefGoogle Scholar
  23. [254]
    T. D. Kieu. Hilbert’s incompleteness, Chaitin’s SZ number and quantum physics, Los Alamos preprint archive http://arXiv:quant-ph/0111062, vl, 10 November 2001.Google Scholar
  24. [351]
    D. Ruelle. Chance and Chaos, Princeton University Press, Princeton, NJ, 1991.Google Scholar
  25. [357]
    R. Schack. Algorithmic information and simplicity in statistical physics, Int. J. Theor. Physics, 36 (1997) 209–226.CrossRefGoogle Scholar
  26. [358]
    J. Schmidhuber. Algorithmic theories of everything, Los Alamos preprint archive http: //arXiv: quant-ph/0011122, 30 November 2000.Google Scholar
  27. [363]
    G. Segre. The definition of a random sequence of qubits: from noncommutative algorithmic probability theory to quantum algorithmic information theory and back, Los Alamos preprint archive http: //arXiv: quant-ph/0009009 v3, 7 November 2000.Google Scholar
  28. [391]
    K. Svozil. Randomness and Undecidability in Physics, World Scientific, Singapore, 1993.Google Scholar
  29. [393]
    K. Svozil. Halting probability amplitude of quantum computers, J. UCS 1 (1995), 201–203.MathSciNetMATHGoogle Scholar
  30. [394]
    K. Svozil. Quantum information theory, J. UCS 5 (1996), 311346.Google Scholar
  31. [395]
    K. Svozil. The Church-Turing thesis as a guiding principle for physics, in C. S. Calude, J. Casti, M. J. Dinneen (eds.). Unconventional Models of Computation, Springer-Verlag, Singapore, 1998, 371–385.Google Scholar
  32. [3]
    P. Andreasen. Universal Source Coding, Masters Thesis, University of Copenhagen, Denmark, 2001.Google Scholar
  33. [151]
    T. M. Cover, P. Gâcs, R. M. Gray. Kolmogorov’s contributions to information theory and algorithmic complexity, Ann. Probab. 17 (1989), 840–865.MathSciNetMATHCrossRefGoogle Scholar
  34. [125]
    G. J. Chaitin. Information-Theoretic Incompleteness, World Scientific, Singapore, 1992.CrossRefGoogle Scholar
  35. [122]
    G. J. Chaitin. Information, Randomness and Incompleteness: Papers on Algorithmic Information Theory, World Scientific, Singapore, 1987 (2nd ed, 1990).Google Scholar
  36. [131]
    G. J. Chaitin. The Unknowable, Springer-Verlag, Singapore, 2000.Google Scholar
  37. [132]
    G. J. Chaitin. Exploring Randomness, Springer-Verlag, London, 2001.MATHCrossRefGoogle Scholar
  38. [134]
    G. J. Chaitin. Conversations with a Mathematician, SpringerVerlag, London, 2002.Google Scholar
  39. [281]
    M. Li, P. M. Vitânyi. Combinatorics and Kolmogorov complexity, Proc. 6th IEEE Structure in Complexity Theory Conf., 1991, 154–163.Google Scholar
  40. [282]
    M. Li, P. M. Vitânyi. An Introduction to Kolmogorov Complexity and Its Applications, Springer-Verlag, Berlin, 1993 (2nd ed, 1997).Google Scholar
  41. [408]
    V. A. Uspensky. Kolmogorov and mathematical logic, J. Symb. Logic 57 (1992), 385–412.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Cristian S. Calude
    • 1
  1. 1.Department of Computer ScienceAuckland UniversityAucklandNew Zealand

Personalised recommendations