Skip to main content

Part of the book series: Texts in Theoretical Computer Science An EATCS Series ((TTCS))

  • 576 Accesses

Abstract

One way to measure the information content of some text is to determine the size of the smallest string (code, input) from which it can be reproduced by some computer (decoder, interpreter). This idea has been independently formalized in a number of different ways by Solomonoff, Kolmogorov and Chaitin.

We have art to save ourselves from the truth.

Friedrich Nietzsche

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

History of Results

  1. G. Rozenberg, A. Salomaa. Cornerstones of Undecidability, Prentice-Hall, Englewood Cliffs, NJ, 1994.

    MATH  Google Scholar 

  2. G. J. Chaitin. Randomness in arithmetic, Scientific American 259 (1988), 80–85. (Reprinted in: [122], 14–19.)

    Google Scholar 

  3. C. S. Calude, J. L. Casti. Parallel thinking, Nature 392 (1998), 549–551.

    Article  Google Scholar 

  4. W. H. Zurek. Thermodynamic cost of computation, algorithmic complexity and the information metric, Nature 341 (1989), 119124.

    Google Scholar 

  5. R. J. Solomonoff. A formal theory of inductive inference, Part 1 and Part 2, Inform. and Control 7 (1964), 1–22, 224–254.

    MathSciNet  Google Scholar 

  6. A. N. Kolmogorov. Three approaches for defining the concept of “information quantity”, Probl. Inf. Transm. 1 (1965), 3–11.

    MathSciNet  MATH  Google Scholar 

  7. G. J. Chaitin. On the length of programs for computing finite binary sequences, J. Assoc. Comput. Mach. 13 (1966), 547–569. (Reprinted in: [122], 219–244.)

    Google Scholar 

  8. G. J. Chaitin. A theory of program size formally identical to information theory, J. Assoc. Comput. Mach. 22 (1975), 329–340. (Reprinted in: [122], 197–223.)

    Google Scholar 

  9. L. A. Levin. Randomness conservation inequalities: information and independence in mathematical theories, Probl. Inf. Transm. 10 (1974), 206–210.

    Google Scholar 

  10. C. P. Schnorr. A survey of the theory of random sequences, in R. E. Butts, J. Hintikka (eds.). Basic Problems in Methodology and Linguistics, Reidel, Dordrecht, 1977, 193–210.

    Google Scholar 

  11. T. L. Fine. Theories of Probability. An Examination of Foundations, Academic Press, New York, 1973.

    MATH  Google Scholar 

  12. P. Gâcs. On the symmetry of algorithc information, Soy. Math. Dokl. 15 (1974), 1477–1480; correction, ibid. 15 (1974), 1480.

    Google Scholar 

  13. G. J. Chaitin. Information, Randomness and Incompleteness: Papers on Algorithmic Information Theory, World Scientific, Singapore, 1987 (2nd ed, 1990 ).

    Google Scholar 

  14. H. P. Katseff, M. Sipser. Several results in program size complexity, Theoret. Comput. Sci. 15 (1981), 291–309.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. R. Meyer. Program size in restricted programming languages, Inform. and Control 21 (1972), 322–394.

    Article  Google Scholar 

  16. W. L. Gewirtz. Investigations in the theory of descriptive complexity, Report NSO-5, Courant Institute of Mathematical Sciences, New York University, 1974, 60 pp.

    Google Scholar 

  17. G. J. Chaitin. A theory of program size formally identical to information theory, J. Assoc. Comput. Mach. 22 (1975), 329–340. (Reprinted in: [122], 197–223.)

    Google Scholar 

  18. M. Li, P. M. Vitânyi. An Introduction to Kolmogorov Complexity and Its Applications, Springer-Verlag, Berlin, 1993 (2nd ed, 1997 ).

    Google Scholar 

  19. D. G. Willis. Computational complexity and probability constructions, J. Assoc. Comput. Mach. 17 (1970), 241–259.

    Article  MathSciNet  MATH  Google Scholar 

  20. V. A. Uspensky. Complexity and entropy: an introduction to the theory of Kolmogorov complexity, in [428], 86–102.

    Google Scholar 

  21. G. J. Chaitin. Information, Randomness and Incompleteness: Papers on Algorithmic Information Theory, World Scientific, Singapore, 1987 (2nd ed, 1990 ).

    Google Scholar 

  22. G. J. Chaitin. The Unknowable, Springer-Verlag, Singapore, 2000.

    Google Scholar 

  23. G. J. Chaitin. Exploring Randomness, Springer-Verlag, London, 2001.

    Book  MATH  Google Scholar 

  24. G. J. Chaitin. Conversations with a Mathematician, Springer-Verlag, London, 2002.

    Book  MATH  Google Scholar 

  25. E. H. Yang, S. Y. Shen. Chaitin complexity, Shannon—information content of a single event, and infinite random sequences 1, Sci. China Ser. A 34, 10 (1991), 1183–1193.

    MathSciNet  MATH  Google Scholar 

  26. E. H. Yang, S. Y. Shen. Chaitin complexity, Shannon—information content of a single event, and infinite random sequences 2, Sci. China Ser. A 34, 11 (1991), 1307–1319.

    MathSciNet  MATH  Google Scholar 

  27. A. Zvonkin, L. A. Levin. The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms, Usp. Mat. Nauk 156 (1970), 85–127.

    MathSciNet  Google Scholar 

  28. V. A. Uspensky. Complexity and entropy: an introduction to the theory of Kolmogorov complexity, in [428], 86–102.

    Google Scholar 

  29. V. A. Uspensky. Kolmogorov and mathematical logic, J. Symb. Logic 57 (1992), 385–412.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. N. Kolmogorov, V. A. Uspensky. Algorithms and randomness, Theory Probab Appl. 32 (1988), 389–412. (Two corrections in: Uspensky [407], p.102.)

    Google Scholar 

  31. M. Li, P. M. Vitânyi. Kolmogorov complexity and its applications, in J. van Leeuwen (ed.). Handbook of Theoretical Computer Science, Vol. A, North-Holland, Amsterdam, MIT Press, Boston, 1990, 187–254.

    Google Scholar 

  32. M. Li, P. M. Vitânyi. An Introduction to Kolmogorov Complexity and Its Applications, Springer-Verlag, Berlin, 1993 (2nd ed, 1997 ).

    Google Scholar 

  33. P. Gâcs. Lecture Notes on Descriptional Complexity and Randomness, Boston University, 1988, 62 pp.

    Google Scholar 

  34. C. Calude. Theories of Computational Complexity, North-Holland, Amsterdam, 1988.

    MATH  Google Scholar 

  35. P. Martin-Löf. Algorithms and Random Sequences, Erlangen University, Nürnberg, Erlangen, 1966.

    Google Scholar 

  36. E. L. Post. Recursively enumerable sets of positive integers and their decision problems, Bull. Amer. Math. Soc. (New Series) 50 (1944), 284–316.

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Sipser. Introduction to the Theory of Computation, PWS Publishing, Boston, 1997.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Calude, C.S. (2002). Program-size. In: Information and Randomness. Texts in Theoretical Computer Science An EATCS Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04978-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04978-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07793-7

  • Online ISBN: 978-3-662-04978-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics