References

  • Markus Winterer
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 53)

Keywords

Silicon Carbide Acta Cryst American Ceramic Society Chemical Vapor Deposition Process Aerosol Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

1 Introduction

  1. Alivisatos, A. P., Science 271 (1996), 933CrossRefGoogle Scholar
  2. Ayyub, P., Palkar, V. R., Chattopadhyay, S., and Multani, M., Phys. Rev. B 51 (1995), 6135CrossRefGoogle Scholar
  3. Balatu, T., Waser, R., Härdtl, K.H., J. Am. Ceram. Soc. 73 (1990), 1663Google Scholar
  4. Burns, L., Am. Ceram. Soc. Bull., June 2000,52 Google Scholar
  5. Chen, C.-C., Herhold, A. B., Johnson, C. S., and Alivisatos, A. P., Science 276 (1997), 398CrossRefGoogle Scholar
  6. Gleiter, H., Adv. Mater. 4 (1992), 474CrossRefGoogle Scholar
  7. Gleiter, H., Nanostr. Mater. 1 (1992), 1CrossRefGoogle Scholar
  8. Gleiter, H., Progress in Materials Science 33 (1989), 223CrossRefGoogle Scholar
  9. Hard, L. G., J. de, chapter D5, “SOFC–Von der Zelle zum System”, in “Elektrokeramische Materialien: Grundlagen und Anwendungen”, Rilich 1995, D5. 1–14Google Scholar
  10. Hennings, D., Klee, M., and Waser, R., Adv. Mater. 3 (1991), 334CrossRefGoogle Scholar
  11. Mayo, M. J., Seidensticker, J. R., Hague, D. C., and Carim, A. H., Nanostr. Mater. 11 (1999), 271CrossRefGoogle Scholar
  12. Nötzel, R. and Ploog, K. H., Adv. Mater. 5 (1993), 22CrossRefGoogle Scholar
  13. Russo, F. P. and Partis, D. A., Am. Ceram. Soc. Bull. June 2000,56 Google Scholar
  14. Sengupta, S. S., Ma, L., Adler, D. L., Payne, D. A., J. Mater. Res. 10 (1995), 1345Google Scholar
  15. Stace, T., Nature 331 (1988), 116Google Scholar
  16. Sugano, S., “Microcluster Physics”, Springer, Berlin 1991 CrossRefGoogle Scholar
  17. Waser, R., J. Eur. Ceram. Soc. 19 (1999), 655CrossRefGoogle Scholar
  18. Xu, C., Tamaki, J., Miura, N., and Yamazoe, N., Sensors and Actuators B3 (1991), 147CrossRefGoogle Scholar

2 Gas Phase Synthesis

  1. Ando, Y. and Ohkohchi, M., J. Cryst. Growth 60 (1982), 147CrossRefGoogle Scholar
  2. Baron, P. A., and Willeke, K., chapter 2, “Aerosol Fundamentals”, in Willeke, K. and Baron, P. A. (eds.) “Aerosol Measurement - Principles, Techniquies and Applications”, Van Nostrand Reinhold 1993, pp. 8Google Scholar
  3. Breiland, W.G. and Ho, P., chapter 3 “Analysis of Chemical Vapor Deposition Processes” in “Chemical Vapor Deposition”, Hitchman, M. L. and Jensen, K. F. (eds.), Academic Press London 1993,91 Google Scholar
  4. Brinker, C. J. and Scherer, G. W., Sol-Gel Science, Academic Press San Diego 1990 Google Scholar
  5. Bryant, W.A., “Review of the Fundamentals of CVD”, J. Mat. Science 12 (1977)Google Scholar
  6. Cannon, W. R., Danforth, S. C., Flint, J. H., Haggerty, J. S., and Marra, R.A., J. Am. Ceram. Soc. 65 (1982), 324CrossRefGoogle Scholar
  7. Capano, M. A. and Trew, R. J. (eds.), MRS Bulletin 3/1997 Google Scholar
  8. Chang, W., Skandan, S. C., Danforth, C., Kear, B. H., and Hahn, H., Nanostruct. Mat. 4 (1994), 507CrossRefGoogle Scholar
  9. Changhong, D., Xianpeng, Z., Jinsong, Z., Yongjin, Y., Lihna, C., and Fei, X., J. Mater. Sci. 32 (1997), 2469Google Scholar
  10. Chow, G.-M. and Gonsalves, K. E. (eds.), “Nanotechnology - Molecularly Designed Materials”, ACS Symposium Series vol. 662, American Chemical Society, Washington 1996 Google Scholar
  11. Flagan, R. C., and Lunden, M. M., Mat. Sci. and Eng. A204 (1995), 113CrossRefGoogle Scholar
  12. Flörke, O. W., Martin, B., Benda, L., Paschas, S., Bergna, H. E., Roberts, W.O., Welsh, W. A., Ettlinger, M., Kerner, D., Kleinschmit, P., Meyer, J., Gies, H., Schiffmann, D., chapter “Silica” in volume A23 of “Ullmann’s Encyclopedia of Industrial Chemistry”, VCH Weinheim 1993, pp. 575Google Scholar
  13. Friedlander, S. K., “Smoke, Dust and Haze - Fundamentals of Aerosol Behavior”, Wiley, New York 1977 Google Scholar
  14. Greskovich, C. and Rosolowski, J. H., J. Am. Ceram. Soc. 59 (1976), 337Google Scholar
  15. Gurav, A., Kodas, T., Plyum, T., and Xiong, Y., Aerosol Sci. Techn. 19 (1993), 411Google Scholar
  16. Haigis, B. and A. Pickering, A., Laser and Optronics 3/1994 Google Scholar
  17. Harris, G. L. (ed.), “Properties of Silicon Carbide”, Inspec, London 1995 Google Scholar
  18. Hinds, W. C., Aerosol Technology, Wiley New York 1982 Google Scholar
  19. Heine, H., Völz, H.G., Woditsch, P., Westerhaus, A., Grieber, W.-D., Liedkerke, M. de, Buxbaum, G., Printzen, H., Mausmann, M., Räde, D., Trenczek, G., Wilhelm, V., Berger, G., Endriß, H., Wienand, H., Adrian, G., Cork, W. B., Ferch, H., Leitner, L., Kathrein, H., Schwab, E., Jakkusch, H., Ohlinger, M., Veitch, R., Etzrodt, G., Frabz, K.-D., Härtner, H., Besod, R., Gaedcke, H., chapter “Pigments, Inorganic”, in volume A20 of “Ullmann’s Encyclopedia of Industrial Chemistry”, VCH Weinheim 1992, pp. 243Google Scholar
  20. Hitchman, M. L. and Jensen, K. F., 1993, chapter 1 “Chemical Vapor Deposition - An Overview” in “Chemical Vapor Deposition”, Hitchman, M. L. and Jensen, K. F. (eds.), Academic Press London 1993, 1 Google Scholar
  21. Klabunde, K. J., Stark, J. V., Koper, O., Mohs, C., Khaleel, A., Glavee, G., Zhang, D., Sorensen, C. M., and Hadjipanayis, G. C., in “Nanophase Materials”, Hadjipanayis, G. C., and Siegel, R. W. (eds.), Kluwer Amsterdam 1994, 1 Google Scholar
  22. Klein, S., dissertation, “Chemische Gasphasensynthese und Charakterisierung von nanokristallinem Siliziumkarbid-Pulver”, VDI Düsseldorf 1999 Google Scholar
  23. Kodas, T. T., Adv. Mat. 1 (1989), 330CrossRefGoogle Scholar
  24. Kodas, T. T. and Hampden-Smith, M. J., chapter 9 “Overview of Metal CVD”, in “The Chemistry of Metal CVD”, Kodas, T. T. and Hampden-Smith, M. J. ( eds. ), VCH Weinheim, 1994, 429Google Scholar
  25. Kodas, T. T. and Hampden-Smith, M. J., “Aerosol Processing of Materials”, Wiley-VCH, New York 1999 Google Scholar
  26. Kriechbaum, G. W. and Kleinschmit, P., Adv. Mat. 1 (1989), 330CrossRefGoogle Scholar
  27. Krstic, V. D., MRS Bulletin 2/1995,46 Google Scholar
  28. Kruis, F. E., Fissan, H., and Peled, A., J. Aerosol Sci. 29 (1998), 511CrossRefGoogle Scholar
  29. Kruis, F. E., Kusters, K. A., Pratsinis, S. E., and Scarlett, B., Aerosol Sci. Techn. 19 (1993), 514CrossRefGoogle Scholar
  30. Liethschmidt, K., “Silicon Carbide”, in “Ullmann’s Encyclopedia of Industrial Chemistry”, Volume A23 (1993), 749Google Scholar
  31. Linackers, D., Strecker, M. G. D., Roth, P., Janzen, C., and Pratsinis, S. E., Comb. Sci. Techn. 123 (1997), 287CrossRefGoogle Scholar
  32. Mazdiyasni, K. S., Lynch, C. T., and Smith, J. S., J. Am. Ceram. Soc. 48 (1965), 372CrossRefGoogle Scholar
  33. Nariki, Y., Inoue, Y., and Tanaka, K., J. Mater. Sci. 5 (1990), 3101CrossRefGoogle Scholar
  34. Pensel, G., and Helbig, R., Festkörperprobleme, 1990, 30, 133CrossRefGoogle Scholar
  35. Pratsinis, S. E. and Kodas, T. T., “Manufacturing of Materials by Aerosol Processes”, chapter 33 in “Aerosol Measurement - Principles, Techniquies and Applications”, K. Willeke, and Baron, P. A. (eds.), van Nostrand Reinhold 1993, pp. 721Google Scholar
  36. Reist, P. C., “Aerosol Science and Technology”, McGraw-Hill New York 1993 Google Scholar
  37. Schafer, D. W. and Hurd, A. J., Aerosol Sci. Techn. 12 (1990), 876CrossRefGoogle Scholar
  38. Segal, D., “Chemical Synthesis of Advanced Ceramic Materials”, Cambridge University Press Cambridge 1989 Google Scholar
  39. Seinfeld, J. H. and Pandis, S. N., “Atmospheric Chemistry and Physics”, Wiley 1998 Google Scholar
  40. Sharafat, S. Wong, C. P. C., and Reis, E. E., Fusion Technology 19 (1991), 901Google Scholar
  41. Siegel, R. W., “Cluster Assembly of Nanophase Materials”, chapter 13 in “Materials Science and Technology”, vol. 15: “Processing of Metals and Alloys”, Cahn, R. W. (ed.), VCH Wein-heim 1991,583 Google Scholar
  42. Skandan, G., Chen, Y.-J., Glumac, N., and Kear, B. H., Nanostruct. Mat. 11 (1999), 149CrossRefGoogle Scholar
  43. Somiya, S., and Inomata, Y. (eds.), “Silicon Carbide Ceramics 1”, Elsevier 1991 Google Scholar
  44. Starck, H. C./Bayer AG, Laufenburg, GermanyGoogle Scholar
  45. Ulrich, G. D., and Riehl, J. W., J. Coll. Int. Sci. 87 (1982), 257CrossRefGoogle Scholar
  46. Ulrich, G. D., Chem. Eng. News August 1984, 22Google Scholar
  47. Ulrich, G. D., Comb. Sci. Techn. 4 (1971), 47CrossRefGoogle Scholar
  48. Vallen, R., Kaiser, A., Förster, J., Buchkremer, H. P., and Stöver, D., J. Mater.Sci. 31 (1996), 3623CrossRefGoogle Scholar
  49. Vohler, O. Sturm, F. v., Wege, E., Kienle, H. v., Voll, M., Kleinschmit, P., chapter “Carbon” in volume A5 of “Ullmann’s Encyclopedia of Industrial Chemistry”, VCH Weinheim 1986, p. 140Google Scholar
  50. White, D. A., Oleff, S. M., and Fox, J. R., Adv. Ceram. Mater. 2 (1987), 53Google Scholar
  51. Benker, A., diploma thesis, Darmstadt 1999Google Scholar
  52. Besling, W. F. A., Goossens, A., Meester, B., Schoonman, J., J. Appl. Phys. 83 (1998), 544CrossRefGoogle Scholar
  53. Bradley, D. C., Mehrotra, R. C., Gaur, D. P., “Metal Alkoxides”, Acadamic Press London 1978Google Scholar
  54. Bradley, D. C., Chem. Rev. 89 (1989), 1317Google Scholar
  55. Cannon, W. R., Danforth, S. C., Flint, J. H., Haggerty, J. S., and Marra, R. A., J. Am. Ceram. Soc., 65 (1982), 324 and 330Google Scholar
  56. Cauchetier, M., Croix, O., Luce, M., Baraton, M. I., Merle, T., Quintard, P., J. Eur. Ceram. Soc. 8 (1991), 215CrossRefGoogle Scholar
  57. Chang, W., Skandan, S. C., Danforth, C., Kear, B. H., and Hahn, H., Nanostruct. Mat. 4 (1994), 507Google Scholar
  58. Deppert, K., Hansson, H.-C., Jeppesen, S., Miller, M. S., Samuelson, L., Seifert, W., and Wiedensohler, A., J. Crystal growth 145 (1994), 636 )CrossRefGoogle Scholar
  59. Elihn, K., Otten, F., Boman, M., Kruis, F.E., Fissan, H., Carlsson, J.-0., Nanostruct. Mat. 12 (1999), 79Google Scholar
  60. Fotou, G. P. and Kodas, T. T. Advanced Materials 9 (1997), 420CrossRefGoogle Scholar
  61. Gonsalves, K. E., Strutt, P. R., Xiao, T. D., and Klemens, P. G., J. Mat. Sci. 27 (1992), 3238CrossRefGoogle Scholar
  62. Hersee, S. D., and Ballingall, J. M., J. Vac. Sci. Technol. A8 (1990), 800CrossRefGoogle Scholar
  63. Hinkle, L. D., and Mariano, C. F., J. Vac. Sci. Technol. A9 (1991), 2043Google Scholar
  64. Klein, S., Winterer, M. and Hahn, H., Chem. Vap. Dep. 4 (1998), 143CrossRefGoogle Scholar
  65. Kodas, T. T., and Hampden-Smith, M., “Overview of Metal CVD”, chapter 9 in “The Chemistry of Metal CVD”, Kodas,T.T. and Hampden-Smith, M. ( eds. ), VCH Weinheim 1994, pp. 429Google Scholar
  66. Konrad, A., Fries, T., Gahn, A., Kummer, F., Herr, U., Tidecks, R., Samwer, K., J. Appl. Phys. 86 (1999), 3129CrossRefGoogle Scholar
  67. Linackers, D., Strecker, M. G. D., Roth, P., Janzen, C., and Pratsinis, S. E., Comb. Sci. Techn. 123 (1997), 287CrossRefGoogle Scholar
  68. Littau, K. A., Szajowski, P. J., Muller, A. J., Kortan, A. R., and Bruis, L. E., J. Phys. Chem. 97 (1993), 1224Google Scholar
  69. Löffler, F., “Dust Separation”, chapter 13 in Volume B2 of “Ullmanns Encyclopedia of Indus-trial Chemistry”, VCH Weinheim 1988Google Scholar
  70. Mazdiyasni, K. S., Lynch, C. T., and Smith, J. S., J. Am. Ceram. Soc. 48 (1965), 372CrossRefGoogle Scholar
  71. McMillin, B K, Biswas, P., and Zachariah, M. R., J. Mater. Res. 11 (1996), 1552Google Scholar
  72. Powell, Q. H., Kodas, T. T., and Bruce M. Anderson, Chem. Vap. Deposition 2 (1996), 179CrossRefGoogle Scholar
  73. Rao, N., Girshick, S., Heberlein, J., McMurry, P., Jones, S., Hansen, D., Michel, B., Plasma Chem. Plasma Proc. 15 (1995), 581CrossRefGoogle Scholar
  74. Rees, W. S., “Introduction”, chapter 1 in “CVD of Nonmetals” W. S. Rees (ed.), VCH Weinheim 1996, pp. 1Google Scholar
  75. Reist, P.C., Aerosol Science and Technology, McGraw-Hill New York 1993 Google Scholar
  76. Rulison, A. J., Miguel, P. F., Katz, J. L., J. Mater. Res. 11 (1996), 3083CrossRefGoogle Scholar
  77. Sacilotti, M., Horiuchi, L., Decobert, J., Brasil, M. J., Cardoso, L. P., Osstart, P., and Ganiere, J. D., J. Appl. Phys. 71 (1992), 179Google Scholar
  78. Schultz, D. L., and Marks, T. J., “Superconducting Materials”, chapter 2 in “CVD of Nonmetals” Rees, W. S., (ed.), VCH Weinheim 1996, pp. 37Google Scholar
  79. Seifried, S. thesis 2000Google Scholar
  80. Seifried, S., Winterer, M. and Hahn, H., Chem. Vap. Dep. 6 (2000), 630CrossRefGoogle Scholar
  81. Skandan, G., Chen, Y.-J., Glumac, N., and Kear, B. H., Nanostruct. Mat. 11 (1999), 149CrossRefGoogle Scholar
  82. Srdic, V. V., Winterer, M., and Hahn, H., J. Am. Ceram. Soc. 83 (2000), 729CrossRefGoogle Scholar
  83. Srdic, V. V., Winterer, M., and Hahn, H., J. Am. Ceram. Soc. 83 (2000), 1853Google Scholar
  84. Srdic, V. V., Winterer, M., A. MöIler, G. Miehe and Hahn, H., J. Am. Ceram. Soc. 84 (2001), 2771Google Scholar
  85. Srdic, V. V., Winterer, M., Miehe, G., and Hahn, H., Nanostruct. Mat. 12 (1999), 95CrossRefGoogle Scholar
  86. Sullivan, J. J., “Materials Delivery Challenges for MLM” MKS Technical Report 1994 Google Scholar
  87. Sullivan, J. J., Schaffer, S., and Jacobs, R. P., J. Vac. Sci. Technol. A7 (1989), 2387Google Scholar
  88. Sullivan. J. J. and Jacobs, R. P., Solid State Technol. 29 (1986), 113Google Scholar
  89. Tompa, G.S., “Semiconduction Materials” chapter 4 in “CVD of Nonmetals” Rees, W. S., (ed.), VCH Weinheim 1996, pp. 193Google Scholar
  90. Ulrich, G. D., Comb. Sci. Techn. 4 (1971), 47Google Scholar
  91. Vollath, D. and Szabo, D.V., and Haußelt, J., J. Eur. Ceram. Soc. 17 (1997), 1317Google Scholar
  92. Vollath, D. and Szabo, D.V., Nanostruct. Mat. 4 (1994), 927CrossRefGoogle Scholar
  93. Vollath, D., Sickafus, K. E., Nanostruct. Mat. 1 (1992), 427CrossRefGoogle Scholar
  94. Vollath, D., Sickafus, K. E., Nanostruct. Mat. 2 (1993), 451CrossRefGoogle Scholar
  95. Wahl, G., chapter 10 “Abscheidung aus der Gasphase”, in volume 2 of “Vakuumbeschichtung”, Kienel, G., and Rö11, K. (eds.) VDI Verlag Dusseldorf 1993, pp. 376Google Scholar
  96. Walzel, P., “Spraying and Atomizing of Liquids”, chapter 6 in volume B2 of “Ullmann’s Ency-clopedia of Industrial Chemistry”, VCH Weinheim 1988 Google Scholar
  97. Wu, H.-D. and Readey, D. W., “Ceramic Transactions 2: Silicon Carbide” (1987), 35, in “Silicon Carbide’87, Cawley”, J. D. (ed.), Am. Ceram. Soc. Westerville 1989 Google Scholar
  98. Wutz, M., Adam, H., and Walcher, W., “Vacuum Science and Technology”, Vieweg Braunschweig 1989 Google Scholar
  99. Agival, Y. and Schieber, M., J. Cryst. Growth 9 (1971), 127CrossRefGoogle Scholar
  100. Anantharaman, T. R., and Christian, J. W., Acta Cryst. 9 (1956), 479CrossRefGoogle Scholar
  101. Barret, E. P., Joyner, L. G., and Halenda, P. P., J. Am. Chem. Soc. 73 (1951), 373CrossRefGoogle Scholar
  102. Brinker, C. J., and Scherer, G. W., “Sol-Gel Science”, Academic Press San Diego 1990 Google Scholar
  103. Brunauer, S., “The Adsorption of Gases and Vapors Vol. 1”, Princeton University Press, Prince-ton 1945 Google Scholar
  104. Brunauer, S., Emmett., P. H., and Teller, E., J. Am. Chem. Soc. 60 (1938), 309CrossRefGoogle Scholar
  105. Buschmann, V., Klein, S., FueB, H., and Hahn, H., J. Cryst. Growth 193 (1998), 335CrossRefGoogle Scholar
  106. Chatterjee, A., Kalia, R., Nakano, A., Omeltchenko, A., Tsuruta, K., Vashishta, P., Loong, C.-K., Winterer, M., Klein, S., Appl. Phys. Lett. 77 (2000), 1132Google Scholar
  107. Clegg, W. J., J. Am. Ceram. Soc. 83 (2000), 1039Google Scholar
  108. Clifford, R. P., Gownlock, B. G., Johnson, C. A. F., and Stevenson, J., J. Organometal. Chem. 43 (1972), 53CrossRefGoogle Scholar
  109. Dobbins, R.A., and Megaridis, C. M., Langmuir 3 (1987), 254Google Scholar
  110. Ehrburger-Dolle, F., “Fractal Characteristics of Silica Surfaces and Aggregates”, chapter 2B in “The Surface Properties of Silicas”, Legrand, A. P. (ed.) Wiley New York 1998 Google Scholar
  111. Friedlander, S. K. and Wang, C. S. J. Coll. Int. Sci. 22 (1966), 126Google Scholar
  112. Fritz, G., and Marquardt, G., Z. Anorg. Allg. Chem. 1 (1974), 404Google Scholar
  113. Gedde, U. W., “Polymer Physics”, Chapman and Hall 1995Google Scholar
  114. Greg, S. J. and Sing, K. S. W., “Adsorption, Surface Area and Porosity”, Academic Press San Diego 1982 Google Scholar
  115. Hinds, W. C., “Physical and Chemical Changes in the Particulate Phase”, chapter 4: in Willeke K. and P.A. Baron (eds.), “Aerosol Measurement - Principles, Techniquies and Applications”, Van Nostrand Reinhold, New York 1993 Google Scholar
  116. Hurd, A. J., Schaefer, D. W., and Martin, J. E., Phys. Rev. A35 (1987), 2361Google Scholar
  117. John, W., “The Characteristics of Environmental and Laboratory-Generated Aerosols”, chapter 5 in “Aerosol Measurement - Principles, Techniquies and Applications”, K. Willeke, and Baron, P. A. (eds.), van Nostrand Reinhold 1993, pp. 54Google Scholar
  118. Keijser, Th. H. de, Mittenmeijer, E. J., and Rozendaal, H. C. F., J. Appl. Cryst. 16 (1983), 309CrossRefGoogle Scholar
  119. Klein, S., Winterer, M., and Hahn, H., Chem. Vap. Dep. 4 (1998), 143CrossRefGoogle Scholar
  120. Klein, S., Winterer, M., and Hahn, H., Mat. Res. Soc. Symp. Proc. 501 (1998), 27CrossRefGoogle Scholar
  121. Klein, S., dissertation, “Chemische Gasphasensynthese und Characterisierung von nanokristallinem Siliziumkarbid-Pulver”, VDI Düsseldorf 1999 Google Scholar
  122. Klotz, H.-D., Drost, H., Spangenberg, H.-J., Z. Phys. Chemie Leipzig 266 (1985), 101Google Scholar
  123. Krill, C. E. and Birringer, R. Phil. Mag. A77 (1998), 621Google Scholar
  124. Lai, F. S., Friedlander, S. K., Pich, J., and Hidy, G. M., J. Coll. Int. Sci. 39 (1971), 395CrossRefGoogle Scholar
  125. Landgrebe, J. D. and Pratsinis, S. E., Ind. Chem. Res. 28 (1989), 1474Google Scholar
  126. Lindackers, D, D., “Erzeugung und Charakterisierung von oxidischen Nanopartikeln”, dissertation U. Duisburg, published in Shaker Verlag 1999 Google Scholar
  127. Martin, J. E., J. Appl. Cryst. 19 (1986), 25CrossRefGoogle Scholar
  128. Lee, K. W., Chen, H., and Gieseke, J. A., Aerosol Sci. and Technol. 3 (1984), 53CrossRefGoogle Scholar
  129. Okabe, Y., Hojo, J., and Kato, A., J. Less-Comm. Metals 68 (1979), 29CrossRefGoogle Scholar
  130. Pfeifer, P. and Avnir, D. J. Chem. Phys. 79 (1983), 3558Google Scholar
  131. Reist, P. C., “Aerosol Science and Technology”, McGraw-Hill 1993 Google Scholar
  132. Schafer, D. W. and Hurd, A. J., Aerosol Sci. Techn. 12 (1990), 876CrossRefGoogle Scholar
  133. Schafer, D. W., Martin, J. E., Wiltzius, P., and Cannell, D. S., Phys. Rev. Lett. 52 (1984), 2371Google Scholar
  134. Seinfeld, J. H. and Pandis, S. N., “Atmospheric Chemistry and Physics”, Wiley 1998 Google Scholar
  135. Tsantilis, S. and Pratsinis, S. E., AIChE Journal, in press 2000 Google Scholar
  136. Wong, P.-Z. and Cao, Q.-Z., Phys. Rev. B45 (1992), 7627CrossRefGoogle Scholar
  137. Wu, H., Ready, D. W., Silicon Carbide Symposium, Ceramic Transactions 1987, Cawley, J. D. (ed.), J. D.Westerville, Ohio, American Ceramic Society 1989, 235Google Scholar
  138. Xiao, T. D., Gonsalves, K. E., Strutt, P. R., Klemens, P. G., J. Mater. Sci. 28 (1883), 1334Google Scholar

3 Modeling Particle Formation and Growth

  1. Barsoum, M. W. and Ownby, P. D., in “Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems”, Pask, J. and Evans, A. ( eds. ), Plenum Press New York 1981, 457CrossRefGoogle Scholar
  2. Biswas, P., Wu, C. Y., Zachariah, M. R., and McMillan, B., J. Mater. Sci., 12, (1997), 714Google Scholar
  3. Cannon, W. R., Danforth, S. C., Flint, J. H., Haggerty, J. S., and Marra, R. A., J. Am. Ceram. Soc. 65 (1982), 324CrossRefGoogle Scholar
  4. Egashira, Y., Kim, H. J., Komiyama, H., J. Am. Ceram. Soc. 77 (1994), 2009Google Scholar
  5. Flagan, R. C., and Lunden, M. M., Mater. Sci. and Eng. A204 (1995), 113CrossRefGoogle Scholar
  6. Friedlander, S. K., “Smoke, Dust and Haze - Fundamentals of Aerosol Behavior”, Wiley New York 1977 Google Scholar
  7. Gelbard, F. and Seinfeld, J. H., Coll. Int. Sci. 68 (1979), 363Google Scholar
  8. Girshick, S. L. and Chiu, C.-P., Aerosol Sci. 21 (1990), 641CrossRefGoogle Scholar
  9. Gonsalves, K. E., Strutt, P. R., Xiao, T. D., Klemens, P. G., J. Mat. Sci. 27 (1992), 3231Google Scholar
  10. Grandqvist, C. G., and Buhrman, R. A., J. Appl. Phys. 47 (1976), 2200Google Scholar
  11. Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., “Introduction to Ceramics”, 2’d edition John Wiley 1976 Google Scholar
  12. Kobata, A., Kusakabe, K., and Morooka, S., AIChe Journal 37 (1991), 347CrossRefGoogle Scholar
  13. Koch, W. and Friedlander, S. K., J. Coll. Int. Sci. 140 (1990), 419CrossRefGoogle Scholar
  14. Kruis, F. E., Schoonman, J., and Scarlett, B., J. Aerosol Sci. 25 (1994), 1291Google Scholar
  15. Landgrebe, J. D., and Pratsinis, S. E., J. Coll. Int. Sci. 139 (1990), 63CrossRefGoogle Scholar
  16. Lihrman, J. M., and Cauchetier, M., J. Europ. Ceram. Soc. 13 (1994), 41CrossRefGoogle Scholar
  17. Lindackers, D., Strecker, M. G. D., Roth, P., Janzen, C., and Pratsinis, S. E., Comb. Sci. Techn. 123 (1997), 287CrossRefGoogle Scholar
  18. Matsoukas, T. and Friedlander, S. K., J. Coll. Int. Sci. 146 (1991), 495CrossRefGoogle Scholar
  19. Okuyama, K., Huang, D. D., Seinfeld, J. H., Tani, N., Matsui, I., Jpn. J. Appl. Phys. 31 (1992), 1CrossRefGoogle Scholar
  20. Panda, S. and Pratsinis, S.E., Nanostructured Mat. 5 (1995), 755CrossRefGoogle Scholar
  21. Stull, D. R. and Prophet, H., “JANAF Thermochemical Tables”, National Bureau of Standards 1971 Google Scholar
  22. Tsantilis, S. and Pratsinis, S. E., AIChE Journal, in press 2000 Google Scholar
  23. Ulrich, G. D., Comb. Sci. Techn., 4 (1971), 47CrossRefGoogle Scholar
  24. Wu, J. J. and Flagan, R. C., J. Coll. Int. Sci. 123 (1988), 339CrossRefGoogle Scholar
  25. Wu, M. K., Windeler, R. S., Steiner, C. K. R., Börs, T., and Friedlander, S. K., Aerosol Sci. Techn. 19 (1993), 527Google Scholar
  26. Xiao, T. D., Gonsalves, K.E., Strutt, P. R., and Klemens, P. G., J. Mater. Sci. 28 (1993), 1334Google Scholar
  27. Xiong, Y., Akhtar, M. K., and Pratsinis, S. E., J. Aerosol Sci. 24 (1993), 301CrossRefGoogle Scholar
  28. Xiong, Y., Pratsinis, S. E., and Weimer, A. W., AIChE Journal 38 (1992), 1685CrossRefGoogle Scholar
  29. Xiong, Y., Pratsinis, S. E., J. Aerosol Sci. 24 (1993), 283CrossRefGoogle Scholar
  30. Atkins, P. W., “Physical Chemistry”, third edition, Oxford University Press, Oxford 1986 Google Scholar
  31. Breiland, W. G. and Ho, P., chapter 3 “Analysis of Chemical Vapor Deposition Processes” inGoogle Scholar
  32. Chemical Vapor Deposition“, Hitchman, M. L. and Jensen, K. F. (eds.), Academic Press London 1993,91 Google Scholar
  33. Cannon, W. R., Danforth, S. C., Flint, J. H., Haggerty, J. S., and Marra, R. A., J. Am. Ceram. Soc. 65 (1982), 324CrossRefGoogle Scholar
  34. Clifford, R. P., Gownlock, B. G., Johnson, C. A. F., and Stevenson, J., J. Organometl. Chem. 43 (1972), 53CrossRefGoogle Scholar
  35. Fairbanks, D. F. and Wilke, C. R., Ind. Eng. Chem. 42 (1950), 471CrossRefGoogle Scholar
  36. Froment, G. F. and Bischoff, K. B., “Chemical Reactor Analysis and Design”, Wiley New York 1990 Google Scholar
  37. Jakubith, M., “Chemische Verfahrenstechnik”, VCH Weinheim 1991 Google Scholar
  38. Jensen, K. F., “Fundamentals of Chemical Vapor Deposition”, chapter 2 in “Chemical Vapor Deposition”, Hitchman, M. L. and Jensen, K. F. ( eds. ), Academic Press London 1993, pp. 31Google Scholar
  39. Jensen, K. F., J. Cryst. Growth, 98 (1989), 148Google Scholar
  40. Lafferty, J. M. “Foundations of Vacuum Science and Technology”, Wiley, New York 1998 Google Scholar
  41. Lee, H. H., “Fundamentals of Microelectronics Processing”, McGraw-Hill, New York 1990 Google Scholar
  42. Miiller-Erlwein, E., “Computeranwendungen in der Chemischen Reaktionstechnik”, VCH Weinheim 1991 Google Scholar
  43. Oran, E. S. and Boris, J. P., “Numerical Simulation of Reactive Flow”, Elsevier, New York 1987 Google Scholar
  44. Reid, R. C., Prausnitz, J. M., and Poling, B. E., “The Properties of Gases and Liquids”, McGraw-Hill New York 1987Google Scholar
  45. Stull, D. R. and Prophet, H., “JANAF Thermochemical Tables”, National Bureau of Standards 1971Google Scholar
  46. Wahl, G., “Abscheidung aus der Gasphase”, chapter 10 in volume 2 of “Vakuumbeschichtung”, Kienel, G., and Röll, K. (eds.) VDI Verlag Düsseldorf 1993, pp. 376Google Scholar
  47. Atkins, P. W., “Physical Chemistry”, Oxford University Press Oxford 1986 Google Scholar
  48. Chatterjee, A., Kalia, R., Nakano, A., Omeltchenko, A., Tsuruta, K., Vashishta, P., Loong, C.-K., Winterer, M., and Klein, S., Appl. Phys. Lett. 77 (2000), 1132Google Scholar
  49. Chiang, Y.-M., Birnie, D., and Kingery, D. W., “Physical Ceramics”, Wiley New York 1997Google Scholar
  50. Clifford, R. P., Gownlock, B. G., Johnson, C. A. F., and Stevenson, J., J. Organometl. Chem. 43 (1972), 53CrossRefGoogle Scholar
  51. Friedlander, S. K., “Smoke, Dust and Haze - Fundamentals of Aerosol Behavior”, Wiley New York 1977Google Scholar
  52. Hanle, W. and Franck, E. U.“Querschnitte von Atomen, Ionen und Molekeln”, chapter 13.24 in Landolt-Börnstein “Atom-und Molekülphysik 1. Teil, Atome und Ionen”, Eucken, A. ( ed. ), Springer Berlin 1950, pp. 323Google Scholar
  53. Hooff, J. H. C. van and Roelofsen, J. W., “Techniques of Zeolite Characterization”, chapter 7 in “Introduction to Zeolite Science and Practice”, Bekkum, H. van, Flanigen, E. M., Jansen, J. C. ( eds. ), Elsevier Amsterdam 1991, pp. 241CrossRefGoogle Scholar
  54. Keblinski, P., Wolf, D., Cleri, F., Phillpot, S. R., and Gleiter, H., MRS Bulletin September 1998, 36Google Scholar
  55. Kruis, F. E., Kusters, K. A., Pratsinis, S. E., and Scarlett, B., Aerosol Sci. Techn. 19 (1993), 514Google Scholar
  56. Pratsinis, S. E., J. Coll. Int. Sci. 124 (1988), 416Google Scholar
  57. Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., “Numerical Recipes”, Cambridge University Press, Cambridge 1986Google Scholar
  58. Rijswijk,W. van and Shanefield, D. J., J. Am. Ceram. Soc. 73 (1990), 148CrossRefGoogle Scholar
  59. Seinfeld, J. H., and Pandis, S. N., “Atmospheric Chemistry and Physics”, Wiley New York 1998Google Scholar
  60. Stull, D. R. and Prophet, H., “JANAF Thermochemical Tables”, National Bureau of Standards 1971Google Scholar
  61. Tsureka, S., and Yoshinaga, H., in “Grain Boundary Controlled Properties of Fine Ceramics”, Ishizaki, K., Niihara, K., Isotani, M., and Ford, R. G. (eds.), Elsevier, London 1992, 167CrossRefGoogle Scholar
  62. Vaßen, R., Kaiser, A., Förster, J., Buchkremer, H. P., and Stöver, D., J. Mat. Sci. 31 (1996), 3623CrossRefGoogle Scholar
  63. Weast, R. C. (ed.), CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton 1981 Google Scholar
  64. Wu, M. K., Windeler, R. S., Steiner, C. K. R., Börs, T., and Friedlander, S. K., Aerosol Sci. Techn. 19 (1993), 527CrossRefGoogle Scholar
  65. Xiong, Y., Pratsinis, S. E., Weimer, A. W., AICHE Journal 38 (1992), 1685CrossRefGoogle Scholar
  66. Jakubith, M., “Chemische Verfahrenstechnik”, VCH Weinheim 1991 Google Scholar
  67. Jensen, K. F., J. Crystal Growth 98 (1989), 148CrossRefGoogle Scholar
  68. Landgrebe, J. D., Pratsinis, S. E., Mastrangelo, S. V. R., Chem. Eng. Sci. 45 (1990), 2931.Google Scholar
  69. Spurk, J. H., Strömungslehre, Springer, Berlin 1996 Google Scholar
  70. Xiong, Y., Pratsinis, S. E., Weimer, A. W., AICHE Journal 38 (1992), 1685CrossRefGoogle Scholar
  71. Buschmann, V., Klein, S., FueB, H., and Hahn, H., J. Cryst. Growth 193 (1998), 335CrossRefGoogle Scholar
  72. Chatterjee, A., Kalia, R., Nakano, A., Omeltchenko, A., Tsuruta, K., Vashishta, P., Loong, C.-K., Winterer, M., and Klein, S., Phys. Lett. 77 (2000), 1132Google Scholar
  73. Dekker, J. P., Put, P. J. van der, Veringa, H. J., and Schoonman, J., Aerosol Sci. Techn. 19 (1993), 549Google Scholar
  74. Egashira, Y., Kim, H. J., and Komiyama, H., J. Am. Ceram. Soc. 77 (1994), 2009Google Scholar
  75. Gutsch, A., private communication 2000 Google Scholar
  76. Hurd, A. J., Schaefer, D. W., and Martin, J. E., Phys. Rev. A 35 (1987), 2361Google Scholar
  77. Hiittinger, Chem. Vap. Dep. 4 (1998), 151Google Scholar
  78. Kato, A., Hojo, J., and Okabe, Y., Memoirs of the Faculty of Engineering Kyushu University 41 (1981), 319Google Scholar
  79. Lindackers, D., Strecker, M. G. D., Roth, P., Janzen, C., and Pratsinis, S. E., Comb. Sci. Techn. 123 (1997), 287CrossRefGoogle Scholar
  80. Mandelbrot, “The Fractal Geometry of Nature”, Freeman, New York 1983 Google Scholar
  81. MacChesney, J. B., and Digiovanni, D. J., J. Am. Ceram. Soc. 73 (1990), 3537CrossRefGoogle Scholar
  82. Okuyama, K., Huang, D. D., Seinfeld, J. H., Tani, N., and Matsui, J., Jpn. J. Appl. Phys. 31 (1992), 1CrossRefGoogle Scholar
  83. Osawa, T., and Komiyama, H., in “New Materials Processing”, World Congress of Chemical Engineering, Tokyo 1986, p. 250Google Scholar
  84. Segal, D., “Chemical Synthesis of Advanced Ceramic Materials”, Cambridge University Press Cambridge 1989 Google Scholar
  85. Seifried, S., Winterer, M., and Hahn, H., in “Functionally Graded Materials 1998”, Kaysser, W. A. (ed.), Trans Tech Publications 1999,277 Google Scholar
  86. Shimogaki, Y., and Komiyama, H., Chem. Lett. 3 (1986), 267CrossRefGoogle Scholar
  87. Srdic, V. V., Winterer, M., Hahn, H., J. Am. Ceram. Soc. 83 (2000), 729CrossRefGoogle Scholar
  88. Tiller, W. A. A., “The Science of Crystallization - Microscopic Interfacial Phenomena” Cambridge University Press, Cambride 1991 Google Scholar
  89. Tsantilis, S. and Pratsinis, S. E., AICHE Journal, in press 2000 Google Scholar
  90. Weber, A. P. and Friedlander, S. K., J. Aerosol Sci. 28 (1997), 179CrossRefGoogle Scholar
  91. Xiong, Y. and Pratsinis, S. E., J. Aerosol. Sci. 24 (1993), 283CrossRefGoogle Scholar
  92. Xiong, Y., Alditar, M. K., and Pratsinis, S. E., J. Aerosol Sci. 24 (1993), 301CrossRefGoogle Scholar
  93. Xiong, Y., Pratsinis, S. E., and Weimer, A. W., AIChE Journal 38 (1992), 1685CrossRefGoogle Scholar
  94. Huilong, Z. and Averback, R. S., Phil. Mag. Lett. 73 (1996), 27CrossRefGoogle Scholar
  95. Lindackers, D., Strecker, M. D. G., and Roth, P., Nanostruct. Mat. 4 (1994), 545CrossRefGoogle Scholar
  96. Tsantilis, S., Pratsinis, S. E., AICHe Journal, in print 2000 Google Scholar
  97. Tsantilis, S., Pratsinis, S. E., and Hass, V., in “Advanced Technologies for Particle Processing” AICHe, Miami 1998, p. 264Google Scholar
  98. Xiong, Y., and Pratsinis, S. E., J. Aerosol Sci. 24 (1993), 283CrossRefGoogle Scholar
  99. Zachariah, R. M., and Carrier, J. M., J. Aerosol Sci. 30 (1999), 1139Google Scholar

4 Processing and Microstructure

  1. Allen, A. J., Krueger, S., Skandan, G., Long, G. G., Hahn, H., Kerch, H. M., Parker, J. C., and Ali, M. N., J. Am. Ceram. Soc. 79 (1996), 1201Google Scholar
  2. Benker, A., diploma thesis, Darmstadt 1999Google Scholar
  3. Bennison, S. J., chapter “Grain Growth” in “Engineered Materials Handbook”, Volume 4 “Ceramics and Glasses”, Schneider, S. J., (chairman) ASM International, 1991, 304 Google Scholar
  4. Betz, U. and Hahn, H., Nanostruct. Mater. 12 (1999), 911CrossRefGoogle Scholar
  5. Betz, U., Hahn, H. and Padmanabhan, K. A., Acta Met., 2000, submittedGoogle Scholar
  6. Chen, D. J. and Mayo, M. J., J. Am. Ceram. Soc., 79 (1996), 906CrossRefGoogle Scholar
  7. Chen, I.-W., Wang, X.-H., Nature 404 (2000), 168CrossRefGoogle Scholar
  8. Chiang, Y.-M., Birnie, D., and Kingery, W. D., “Physical Ceramics - Principles for Ceramic Science and Engineering”, Wiley New York 1997 Google Scholar
  9. Coble, R. L., J. Appl. Phys. 32 (1961), 787CrossRefGoogle Scholar
  10. Duran, P., Villegas, M., Capel, F., Recio, P., and Moure, C., J. Euro. Ceram. Soc., 16 (1996), 945CrossRefGoogle Scholar
  11. Fotou G. P. and Toivo T. Kodas, T. T., Advanced Materials 9 (1997), 420CrossRefGoogle Scholar
  12. German, R. M., chapter “Fundamentals of Sintering” in “Engineered Materials Handbook”, Volume 4 “Ceramics and Glasses”, Schneider, S. J., (chairman) ASM International, 1991, 260 Google Scholar
  13. Gleiter, H., Progress in Materials Science 33 (1989), 223CrossRefGoogle Scholar
  14. Gleiter, H., “Microstructure” chapter 9 in Cahn, R. W. and Haasen, P. (eds.), “Physical Metallurgy”, fourth edition, Elsevier Science, London 1996, 844 Google Scholar
  15. Graaf, M. A. C. G. Van de and Burggraaf, A. J., in Advances in Ceramics, Vol. 2. Edited by Claussen, N., Rühle, M., and Heuer., A. H., American Ceramics Society, Columbus 1984, 744Google Scholar
  16. Groot Zevert., W. F. M., W.nnubst, A. J. A., Theunissen, G. S. A. M., and Burggraaf, A. J., J. Mater. Sci., 25 (1990), 3449Google Scholar
  17. Hahn, H. and Averback, R. S., J. Am. Ceram. Soc. 74 (1991), 2918Google Scholar
  18. Hahn H., and R. S. Averback, Nanostruct. Mater., 1 (1992), 95CrossRefGoogle Scholar
  19. Hahn, H., Nanostruct. Mater., 2 (1993), 251 Google Scholar
  20. Hahn, H., Logas, J., and Averback, R. S., J. Mater. Res. 5 (1990), 609 Google Scholar
  21. Hahn, H., Nanostruct. Mater. 2, (1993), 251 Google Scholar
  22. Herring, C., J. Appl. Phys., 2 (1950), 301 Google Scholar
  23. Hu, M. Z. C., Harris, M. T., and Byers, C. H., J. Coll. Int. Sci. 198 (1998), 87 Google Scholar
  24. Hu, M. Z. C., Hunt, R. D., Andrew, E. A., and Hubburd, C. R., J. Amer. Ceram. Soc. 82 (1999), 2313Google Scholar
  25. Hu, M. Z. C., Zielke, J. T., Lin, J. S., and Byers, C. H., J. Mat. Res. 14 (1999), 103 Google Scholar
  26. Inamura, S., Miyamoto, H., Imaida, Y., Takagawa, M., Hirota, K., and Yamaguchi, O., J. Mater. Sci. 29 (1994), 4913CrossRefGoogle Scholar
  27. Kanters, J., Eisele, U., and Rödel, J., Acta Mater. 48 (2000), 1239CrossRefGoogle Scholar
  28. Kimoto, S., Hirota, K., Yamaguchi, O., Kume, H., Inamura, S., and Miyamoto, H., J. Am. Ceram. Soc. 77 (1994), 1694Google Scholar
  29. Kingery, W. D., Bowen, H. K., and Uhlmann, D. R. R., “Introduction to Ceramics”, 2nd edition, Wiley New York 1976 Google Scholar
  30. Kumar, K. P., Kelzer, K., Burggraaf, A. J., Okuba, T., Nagamoto, H. and Morooka, S., Nature, 358 (1992), 48Google Scholar
  31. Lange, F. F. and Hirlinger, M.M., J. Am. Ceram. Soc., 70 (1987), 827CrossRefGoogle Scholar
  32. Liao, S.C., Chen, Y. J., Kear, B. H., and Mayo, W. E., Nanostruct. Mater. 10 (1998), 1063Google Scholar
  33. Liao, S. C., Mayo, W. E., and Pae, K. D., Acta Mater. 45 (1997), 4027CrossRefGoogle Scholar
  34. Mayo, M. J., Mater. Design, 14 (1993), 323 Google Scholar
  35. Mayo, M. J., in “Superplasticity in Advanced Materials”, Hori, S., Tokizane, M., and Furushiro. N., (eds.) The Japan Society for Research on Superplasticity, Japan, 1991,541 Google Scholar
  36. Mayo, M. J., and Chen, D. J., in “Synthesis and Processing of Nanocrystalline Powder”, Bourell, D. L., (ed.), The Minerals, Metals and Materials Soc., Warrendale, Pennsylvania, 1996,210 Google Scholar
  37. Mayo, M. J., Hague, D. C. and Chen, D. J., Mater. Sci. Engin., A166 (1993), 145CrossRefGoogle Scholar
  38. Mayo, M. J., Seidensticker, J. R., Hague, D. C., and Carim, A. H., Nanostruct. Mater. 11 (1999), 271CrossRefGoogle Scholar
  39. Nitsche, R., Rodewald, M., Skandan, G., Fuess, H., and Hahn, H., Nanostruct. Mater., 7 (1996), 535CrossRefGoogle Scholar
  40. Powell, Q. H., Kodas, T. T., and Anderson, B. M., Chem. Vap. Deposition 2 (1996), 179CrossRefGoogle Scholar
  41. Rajendran, J., Drennan, J., and Badwal, S. P. S., J. Mat. Sci. Lett. 6 (1987), 1431Google Scholar
  42. Rhodes, W. H., J. Am. Ceram. Soc., 64 (1981), 19CrossRefGoogle Scholar
  43. Sagel-Ransijn, C. D., Winnubst, A. J. A., Burggraaf, A. J., and Verweij, H., J. Euro. Ceram. Soc. 16 (1996), 759CrossRefGoogle Scholar
  44. Shi, J. L., Gao, J.H., Li, B. S., and Yen, T. S., J. Euro. Ceram. Soc., 15 (1995), 967CrossRefGoogle Scholar
  45. Skandan, G., “Processing of Nanostructured Zirconia Ceramics,” Nanostruct. Mater. 5 (1995), 111Google Scholar
  46. Skandan, G., Hahn, H., Kear, B. H., Roddy, M., and Cannon, W. R., Mater. Lett., 20 (1994), 305CrossRefGoogle Scholar
  47. Skandan, G., Hahn, H., Roddy, M., and Cannon, W. R., J. Am. Ceram. Soc., 77 (1994), 1706Google Scholar
  48. Srdic, V. V., Winterer, M., and Hahn, H., J. Am. Ceram. Soc. 83 (2000), 729CrossRefGoogle Scholar
  49. Srdic, V. V., Winterer, M., and Hahn, H., J. Am. Ceram. Soc., 83 (2000), 1853Google Scholar
  50. Srdic, V. V., Winterer, M., A. MöIler, G. Miehe and Hahn, H., J. Am. Ceram. Soc. 84 (2001), 2771Google Scholar
  51. Swinkels F. B. and Ashby, M. F., Acta Meta11. 29 (1981), 259Google Scholar
  52. Vollath, D. and Szabo, D.V., Nanostruct. Mater. 4 (1994), 927–938CrossRefGoogle Scholar
  53. Vollath, D., Szabo, D. V., and HauBelt, J., J. Eur. Ceram. Soc. 17 (1997), 1317Google Scholar
  54. Wakai, F., Sakaguchi, S., and Matsuno, Y., Adv. Ceram. Mater. 1 (1986), 259Google Scholar
  55. Wang, J. and Gao, K., Nanostruct. Mater. 11 (1999), 451CrossRefGoogle Scholar
  56. Wang, J., Ong, C. L., Gan L. M., and Ng, S. C., Mater. Letters, 27 (1996), 239CrossRefGoogle Scholar
  57. Winnubst, A. J. A., Theunissen, G. S. A. M., and Burggraaf, A. J., in “Euro Ceramics”, Vol 1., With, G. de, R. A. Terpstra, R. A., and R. Metselaar, R. (eds.), Elsevier, London 1989,393 Google Scholar
  58. Yamaguchi, O., Hirota, K., Inamura, S., and Miyamoto, H., in “Advanced Synthesis and Proc-essing of Composites and Advanced Ceramics”, Ceramic Transactions Vol. 56. The Ameri-can Ceramic Society 1995,353 Google Scholar
  59. Yan, M. F., chapter “Solid State Sintering” in “Engineered Materials Handbook”, Volume 4 “Ceramics and Glasses”, Schneider, S. J., (chairman) ASM International, 1991,304 Google Scholar
  60. Chu, B. (ed.), “Laser Light Scattering”, 2“d edition, Academic Press 1991 Google Scholar
  61. O’Brien, R. W. and White, L. W., J. Chem. Soc. Faraday II 74 (1978), 1607Google Scholar
  62. Barrett, E. P., Joyner, L. G., and Halenda, P. P., J. Am. Ceram. Soc. 73 (1951), 373 Anantharaman, T. R. and Christian, J. W., Acta Cryst., 9 (1956), 479Google Scholar
  63. Cullity, A. D., “Elements of X-Ray Diffraction”, Addison-Wesley, Reading, Massachusetts, 1978 Google Scholar
  64. Toraya, H., Yoshimura, M., and Somiya, S., J. Am. Ceram. Soc. 67 (1984) C119Google Scholar
  65. Howard, C. J., Hill, R. J., and Reichert, B. E., Acta Cryst. B44 (1988), 116CrossRefGoogle Scholar
  66. Levin, I., and D. Brandon, D., J. Am. Ceram. Soc. 81 (1998), 195Google Scholar
  67. Schmid, H. K., J. Am. Ceram. Soc. 70 (1987), 367CrossRefGoogle Scholar
  68. Allen, A. J., Krueger, S., Skandan, G., Long, G. G., Hahn, H., Kerch, H. M., Parker, J. C. and Ali, M. N., J. Am. Ceram. Soc. 79 (1996), 1201Google Scholar
  69. Ayyub, P., Palkar, V. R., Chattopadhyay,S., and Multani, M., Phys. Rev., B51 (1995), 6135 Bennison, S. J., chapter “Grain Growth” in “Engineered Materials Handbook”, Volume 4 “Ceramics and Glasses”, Schneider, S. J., (chairman) ASM International, 1991, 304 Google Scholar
  70. Bondars, B., Heidemane, G., Grabis, J., Laschke, K., Boysen, H., Scheider, J., Frey, F., J. Mater. Sci. 30 (1995), 1621Google Scholar
  71. Brook, R. J., J. Am. Ceram. Soc. 52 (1969), 56CrossRefGoogle Scholar
  72. Chen, D. J. and Mayo, M. J., Nanostruct. Mater. 2 (1993), 469CrossRefGoogle Scholar
  73. Chen, I. W., Mater. Sci. Engin., A166 (1993), 51CrossRefGoogle Scholar
  74. Chen, P. L. and Chen, I. W., J. Am. Ceram. Soc. 79 (1996), 1793Google Scholar
  75. Chen, P. L. and Chen, I. W., J. Am. Ceram. Soc. 79 (1996), 1801Google Scholar
  76. Chen, P. L. and Chen, I. W., J. Am. Ceram. Soc. 79 (1996), 3129CrossRefGoogle Scholar
  77. Chen, P. L. and Chen, I. W., J. Am. Ceram. Soc. 80 (1997), 637CrossRefGoogle Scholar
  78. Chiang, Y: M., Birnie, D., and Kingery, W. D., “Physical Ceramics - Principles for Ceramic Science and Engineering”, Wiley New York 1997 Google Scholar
  79. Duran, P., Villegas, M., Capel, F., Recio, P., and Moure, C., J. Euro. Ceram. Soc., 16 (1996), 945Google Scholar
  80. Flagan, R. C. and Lunden, M. M., Mater. Sci. Eng. A204 (1995), 113CrossRefGoogle Scholar
  81. Frey, F., Boysen, H., Vogt, T., Acta Cryst., B46 (1990), 724CrossRefGoogle Scholar
  82. Garvie, R. C., J. Phys. Chem., 82 (1978), 218Google Scholar
  83. Graaf, M. A. C. G. Van de, Ter Maat, J. H. H., and Burggraaf, A. J., J. Mater. Sci., 20 (1985), 1407Google Scholar
  84. Gregg, S. J. and Sing, K. S. W., “Adsorption, Surface Area and Porosity”, Academic Press 1982 Google Scholar
  85. Hahn, H., Logas, J., and Averback, R. S., J. Mater. Res. 5 (1990), 609CrossRefGoogle Scholar
  86. Hahn, H., Nanostruct. Mater. 2 (1993), 251Google Scholar
  87. John, W., “The Characteristics of Environmetal and Laboratory Generated Aerosols”, chapter 5, in “Aerosol Measurement - Principles, Techniquies and Applications”, K. Willeke and P. A. Baron (eds.), Van Nostrand Reinhold, New York, 1993, 59 Google Scholar
  88. Kingery, W. D. and Francois, B., in “Sintering and Related Phenomena”, Kuczynski, G. C., Hooton, N. A., and Gibbon, C. F., Gordon and Breach, New York 1967,23 Google Scholar
  89. Kingery, W. D., Bowen, H. K., and D. R. Uhlmann, “Introduction to Ceramics”, John Wiley and Sons, New York 1976 Google Scholar
  90. Klein, S., Winterer, M., and Hahn, H., Adv. Mater. (Chem. Vapor Depos.), 4 (1998), 143Google Scholar
  91. Mayo, M. J. and Chen, D. J., in “Synthesis and Processing of Nanocrystalline Powder”, Bourell, D. L. (ed.), Warrendale, Pensylvania: The Minerals, Metals and Materials Society 1996, 210 Google Scholar
  92. Mayo, M. J., and Hague, D. C., Nanostruct. Mater. 3 (1993), 43CrossRefGoogle Scholar
  93. Mayo, M. J., Hague, D. C., and Chen, D. J., Mater. Sci. Engin. A166 (1993), 145CrossRefGoogle Scholar
  94. Mayoral, R., Requena, J., Moya, J. S., Lopez, C., Cintas, A., Miguez, H., Meseguer, F., Vazquez, L., Holgado, M., and Blanco, A., Adv. Mater. 9 (1997), 257CrossRefGoogle Scholar
  95. Nitsche, R., Rodewald, M., Skandan, G., Fuess, H., and Hahn, H. Nanostruct. Mater. 7 (1996), 535Google Scholar
  96. Sagel-Ransijn, C. D., Winnubst, A. J. A., Burggraaf, A. J., and Verweij, H., J. Euro. Ceram. Soc., 16 (1996), 759CrossRefGoogle Scholar
  97. Skandan, G. and Hahn, H., unpublished results 1993Google Scholar
  98. Skandan, G., Hahn, H., Roddy, M. and Cannon, W. R., J. Am. Ceram. Soc., 77 (1994), 1706Google Scholar
  99. Skandan, G., Nanostruct. Mater. 5 (1995), 111CrossRefGoogle Scholar
  100. Stebens, R., “Engineering Properties of Zirconia”, in Schneider, S. J. (ed.), Engineered Materials Handbook volume 4, “Ceramics and Glasses”, ASM 1991, pp 775.Google Scholar
  101. Alexander, K. B., Becher, P. F., Waters, S. B., and Bleier, A., J. Am. Ceram. Soc. 77 (1994), 939CrossRefGoogle Scholar
  102. Balmer, M. L., Lange, F. F., and Levi, C. G., J. Am. Ceram. Soc. 77 (1994), 2069Google Scholar
  103. Balmer, M. L., Eckert, H., Das, N., and Lange, F. F., J. Am. Ceram. Soc. 79 (1996), 321CrossRefGoogle Scholar
  104. Bennison, S. J., “Grain Growth”, in “Engineering Materials Handbook”, volume 4: “Ceramics and Glasses”, ASM International 1991,304 Google Scholar
  105. Garvie, R. C., J. Phys. Chem. 82 (1978), 218CrossRefGoogle Scholar
  106. Hillert, M., Acta Metal. 36 (1988), 3177CrossRefGoogle Scholar
  107. Inamura, S., Miyamoto, H., Imaida, Y., Takagawa, M., Hirota, K., and Yamaguchi, O., J. Mater. Sci. 29 (1994), 4913CrossRefGoogle Scholar
  108. Kingery, W. D., and Francois, B., in “Sintering and Related Phenomena”, Kuczynski, G.C., Hooton, N. A., and Gibbon, C. F., (eds.), Gordon and Breach, New York, 1967,23 Google Scholar
  109. Kingery, W. D., Bowen, H., and Uhlmann, D. R., “Introduction to Ceramics”, Wiley, New York, 1976 Google Scholar
  110. Mayo, M. J., Hague, D. C., and Chen, D. J., Mater. Sci. Engin. A166 (1993), 145CrossRefGoogle Scholar
  111. Mayo, M. J., Mater. Design 14 (1993), 323CrossRefGoogle Scholar
  112. Mayoral, R., Requena, J., Moya, J. S., Lopez, C., Cintas, A., Miguez, H., Meseguer, F., Vazquez, L., Holgado, M., and Blanco, A., Adv. Mater., 9 (1997), 257CrossRefGoogle Scholar
  113. Scott, H. G., J. Mater. Sci. 10 (1975), 1527Google Scholar
  114. Srdic, V. V., and Savic, D. I., J. Mater. Sci. 33 (1998), 2391Google Scholar
  115. Srdic, V. V., Winterer, M. and Hahn, H., J. Am. Ceram. Soc. 83 (2000), 729CrossRefGoogle Scholar
  116. Srdic, V. V., Winterer, M. and Hahn, H., J. Am. Ceram. Soc. 83 (2000), 1853Google Scholar
  117. Garvie, R. C., J. Phys. Chem. 82 (1978), 218Google Scholar
  118. Kingery, W. D., and Francois, B., in “Sintering and Related Phenomena”, Kuczynski, G.C., Hooton, N. A., and Gibbon, C. F., (eds.), Gordon and Breach, New York, 1967,23 Google Scholar
  119. Kingery, W. D., Bowen, H., and Uhlmann, D. R., “Introduction to Ceramics”, Wiley, New York, 1976 Google Scholar
  120. Kung, H. H., J.Solid State Chemistry 52 (1984), 191Google Scholar
  121. Kung, H. H., “Transition Metal Oxides: Surface Chemistry and Catalysis”, Elsevier, Amsterdam 1989 Google Scholar
  122. Mayo, M. J., Hague, D. C., and Chen, D. J., Mater. Sci. Engin. A166 (1993), 145CrossRefGoogle Scholar
  123. Möller, A., 2000 to be publishedGoogle Scholar
  124. Parks, G. A., deBruyn, P. L., J. Phys. Chem. 66 (1962), 967CrossRefGoogle Scholar
  125. Srdic, V. V., Winterer, M., A. Möller, G. Miehe and Hahn, H., J. Am. Ceram. Soc. 84 (2001), 2771Google Scholar
  126. Wang, J. and Gao, L., Nanostr. Mater. 11 (1999), 451CrossRefGoogle Scholar
  127. Bhattacharya, S. S., private communication, Darmstadt 1999Google Scholar
  128. Chen, D.-J., and Mayo, M. J., Nanostruct. Mater. 2 (1993), 469CrossRefGoogle Scholar
  129. Duran, P., Villegas, M., Capel, F., Recio, P., and Moure, C., J. Eur. Ceram. Soc. 16 (1996), 945CrossRefGoogle Scholar
  130. Hughes, A. E., in Science of Ceramic Interfaces II, Nowotny, J. (ed.), Elsevier, Amsterdam 1994, 183Google Scholar
  131. Lange, F. F., J. Am. Ceram. Soc. 69 (1986), 240CrossRefGoogle Scholar
  132. Mondai, P., “Elektrische Eigenschaften nanokristalliner Y2O,-stabilisierter ZrO2 Keramiken”, Dissertation, Darmstadt 1998 Google Scholar
  133. Rhodes, J. Am. Ceram. Soc. 64 (1981), 19Google Scholar
  134. Theunissen, G. S. A. M., Winnubst, A. J. A., and Burggraaf, A. J., J. Eur. Ceram. Soc. 11 (1993), 315CrossRefGoogle Scholar

5 Local Structure and Long Range Order

  1. Babanov, Y., A., Golovchikova, I. V., Boscherini, F., Haubold, T., and Mobilio, S., Nucl. Inst. Meth. Phys. Res. A359 (1995), 231Google Scholar
  2. Balmer, M. L., Lange, F. F., and Levi, C. G., J. Am. Ceram. Soc. 77 (1994), 2069Google Scholar
  3. Balmer, M. L., Eckert, H., Das, N., Lange, F. F., J. Am. Ceram. Soc. 79 (1996), 321CrossRefGoogle Scholar
  4. Bawendi, M. G., Kortan, A. R., Steigerwald, M. L., and Brus, L. E., J. Chem. Phys. 91 (1989), 7282CrossRefGoogle Scholar
  5. Benfield, R. E., Filiponi, A., Bowron, D. T., Newport, R. J., Gurman, S. J., and Schmid, G., Physica B208–209 (1995), 671Google Scholar
  6. Boysen, H., Frey, F., and Vogt, T., Acta Cryst. B47 (1991), 881CrossRefGoogle Scholar
  7. Brook, H. C., Chadwick, A. V., Kennedy, K. M., Morgante, N., Rafeletos, G., Tomba, A., Roberts, M. A., Mat. Sci. Forum, 239–241 (1997), 683CrossRefGoogle Scholar
  8. Catlow, C. R. A., Chadwick, A. V., Greaves, G. N., and Moroney, L. M., J. Am. Ceram. Soc. 69 (1986), 272CrossRefGoogle Scholar
  9. Chemseddine, A., Fieber-Erdmann, Holub-Krappe, E., and Boumaaz, S., Z. Phys. D 40 (1997), 566Google Scholar
  10. Cohen, R. L., Feldman, L. C., West, K. W., and Kincaid, B. M., Phys. Rev. Lett. 49 (1982), 1416Google Scholar
  11. Cornas, A., Moundjoy, G., Piccaluga, G., and Solinas, S., J. Phys. Chem. B 103 (1999), 10081Google Scholar
  12. Crozier, E. D., Rehr, J. J.,and Ingalls, R., “Amorphous and Liquid Systems”, chapter 9 in “X-Ray Absorption - Principles, Applications, Techniques of EXAFS, SEAXFS and XANES”, edited by Koningsberger, D.C., and Prins, R., J. Wiley and Sons, Ney York 1988, 373 Google Scholar
  13. Demourgues, A., Greaves, G. N., Bilsborrow, R., Baker, G., Sery, A., Dent, A. J., and Speit, B., Physica B208–209 (1995), 354Google Scholar
  14. Deng, H., Qiu, H., and Shi, G., Physica B208–209 (1995), 591Google Scholar
  15. Di Cicco, A., Berretoni, M., Stizza, S., Bonetti, E., and Cocco, G., Phys. Rev. B50 (1994), 12386CrossRefGoogle Scholar
  16. Dubiel, M., Brunsch, S., and Tröger, L., J. Phys. Condens. Matter 12 (2000), 4775CrossRefGoogle Scholar
  17. Eastman, J. A., Fitzsimmons, M. R., Müller-Stach, M., Wallner, G., and Elam, W. T., Nanostruct. Mater. 1 (1992)Google Scholar
  18. Ehrhart, P., “Röntgenstreuung und EXAFS”, chapter A 4 in “Physik der Nanostrukturen”, Forschungszentrum Jülich 1998 Google Scholar
  19. Elliot, S. R., “Physics of Amorphous Materials”, Longman Burnt Hill 1990 Google Scholar
  20. Esquivias, L., Barrero-Solano, C., Pinero, M., Prietro, C., J. Alloys Compounds 239 (1996), 71CrossRefGoogle Scholar
  21. Frey, F., Boysen, H., and Vogt, T., Acta Cryst. B46 (1990), 724CrossRefGoogle Scholar
  22. Garvie, R. C., J. Phys. Chem. 82 (1978), 218CrossRefGoogle Scholar
  23. Gleiter, H., Advanced Materials 4 (1992), 474Google Scholar
  24. Haubold, T., Birringer, R., Lengeler, B., and Gleiter, H., Phys. Lett. 135 (1989), 461CrossRefGoogle Scholar
  25. Haubold, T., Boscherini, F., Pascarelli, S., Mobilio, S., and Gleiter, H., Phil. Mag. A66 (1992), 591CrossRefGoogle Scholar
  26. Howard, C.J., Hill, R.J., Reichert, B.E., Acta Cryst. B44 (1988), 116CrossRefGoogle Scholar
  27. Ishizawa, N., Matsushima, Y., Hayashi, M., Ueki, M., Acta Cryst. B55 (1999), 726 Jimenez, C., Esquivias, L., and Prietro, C., J. Alloys Compounds 228 (1995), 188Google Scholar
  28. Kondoh, J., Kikuchi, S., Tomii, Y., Ito, Y., J. Electrochem. Soc. 145 (1998), 1550Google Scholar
  29. Krill, C. E., and Birringer, R., Phil. Mag. 77 (1998), 621Google Scholar
  30. Kuroda, H., Yokoyama, T., Asakura, K., and Iwasawa, Y., Faraday Disc. 92 (1991), 189 Kwei, G. H., Billinge, S. J. L., Cheong, S.W., und J.G. Saxton, Ferroelectrics, 164 (1995), 57Google Scholar
  31. Landron, C., Douy, A., and Bazin, D., Phys. Stat. Sol. B184 (1994), 299CrossRefGoogle Scholar
  32. Landron, C., Mater. Sci. Eng. B. B41 (1996), 217CrossRefGoogle Scholar
  33. Leger, J. M., Tomaszewski, P. E., Atouf, A., and Pereira, A. S., Phys. Rev. B47 (1993), 14075CrossRefGoogle Scholar
  34. Li, P., Chen, I. W., and Penner, Hahn, J. E., J. Am. Ceram. Soc. 77 (1994), 118CrossRefGoogle Scholar
  35. Li, P., Chen, I. W., and Penner, Hahn, J. E., J. Am. Ceram. Soc. 77 (1994), 1281Google Scholar
  36. Li, P., Chen, I. W., and Penner, Hahn, J. E., J. Am. Ceram. Soc. 77 (1994), 1289Google Scholar
  37. Li, P., Chen, I. W., and Penner, Hahn, J. E., Phys. Rev. B48 (1993), 10063CrossRefGoogle Scholar
  38. Li, P., Chen, I. W., and Penner, Hahn, J. E., Phys. Rev. B48 (1993), 10074CrossRefGoogle Scholar
  39. Li, P., Chen, I. W., and Penner, Hahn, J. E., Phys. Rev. B48 (1993), 10082CrossRefGoogle Scholar
  40. Lutzenkirchen-Hecht, D., Buchner, P., Uhlenbusch, J., Streblow, H.-H., Frahm, R., J. Synchro-tron Rad. 6 (1999), 722CrossRefGoogle Scholar
  41. Marcus, M. A., Brus, L. E., Murray, C., Bawendi, M. G., Prasad, A., Alivisatos, A. P., Nanos-truct. Mater. 1 (1992), 323CrossRefGoogle Scholar
  42. Marcus, M. A., Flood, W., Steigerwald, M., Brus, L., and Bawendi, M. J. Phys. Chem. 95 (1991), 1572Google Scholar
  43. Michel, D., Gaffet, E., Berthet, P., Nanostruct. Mater. 6 (1997), 667CrossRefGoogle Scholar
  44. Mikkelsen, J. C. and Boyce, J. B., Phys. Rev. Lett. 49 (1982), 1412Google Scholar
  45. Mikkelsen, J. C. and Boyce, J. B., Phys. Rev. B 28 (1983), 7130Google Scholar
  46. Molenbroek, A. M., Haukka, S., and Clausen, B. S., J. Phys. Chem. B102 (1998), 10680Google Scholar
  47. Moller, K., and Bein, T., J. Phys. Chem. 94 (1990), 845CrossRefGoogle Scholar
  48. Moller, K., Koningsberger, D. C., and Bein, T., J., Phys. Chem. 93 (1989), 6116 )CrossRefGoogle Scholar
  49. Montano, P. A., Schulze, W., Tesche, B., Shenoy, G. K., and Morrison, T. I., Phys. Rev. B30 (1984), 672CrossRefGoogle Scholar
  50. Mountjoy, G., Anderson, R., Newport, R. J., and Smith, M., E., J. Phys. Cond. Matter 12 (2000), 3505CrossRefGoogle Scholar
  51. Moreau, S., Gervais, M., and Douy, A., Sol. State Ionics 101–103 (1997), 625Google Scholar
  52. Niemann, W., Clausen, B., S., Hansen, L. B., Stolze, P., and Norskov, J. K., in Hasnain, S. S. (ed.), “X-Ray Absorption Fine Structure”, Ellis Horwood, New York 1991, 81Google Scholar
  53. Nitsche, R., Winterer, M., and Hahn, H., Nanostruct. Mater. 6 (1995), 679Google Scholar
  54. Nitsche, R., Winterer, M., Croft, M., and Hahn, H., Nucl. Inst. Methods B97 (1995), 127CrossRefGoogle Scholar
  55. Panfilis, S. de, d’Acapito, F., Haas, V., Konrad, H., Weissmtiller, J., and Boscherini, F., Phys. Lett. A207 (1995), 397Google Scholar
  56. Roberts, M. A., Mat. Sci. Forum 239–241 (1997), 683Google Scholar
  57. Scott, H. G. J. Mater. Sci. 10 (1975), 1527Google Scholar
  58. Sicron, N., Ravel, B., Yacoby, Y., Stern, E.A., Dogan, F., Rehr, J.J., Phys. Rev. B50 (1994), 13168CrossRefGoogle Scholar
  59. Smith, D. K., and Newkirk, H. W., Acta Cryst. 18 (1965), 983CrossRefGoogle Scholar
  60. Soo, Y. L., Ming, Z. H., Hunag, S. W., Kao, Y. H., Bhargava, R. N., and Gallagher, D., Phys. Rev. B50 (1994), 7602Google Scholar
  61. Stern, E. A. and Yacoby, Y., J. Phys. Chem. Sol. 57 (1996), 1449Google Scholar
  62. Stern, E. A., Siegel, R. W., Newville, M., Sanders, P. G., and Haskel, D., Phys. Rev. Lett. 75 (1995), 3874CrossRefGoogle Scholar
  63. Tanaka, T., Salama, T.M., Yamaguchi, T., and Tanabe, K., J. Chem. Soc. Faraday Trans. 86 (1990), 467Google Scholar
  64. Tao, Y., Zhao, G., Ju, X., Shao, X, Zhang, W., and Xia, S., Mat. Lett. 28 (1996), 137CrossRefGoogle Scholar
  65. Tran, N., H., H.rtmann, A. J., and Lamb, R. N., J. Phys. Chem. 103 (1999), 4264Google Scholar
  66. Wang, Y., Lu, K., Wang, D., Wu, Z., and F. Z., J. Phys. Cond. Matter 6 (1994), 633CrossRefGoogle Scholar
  67. Wang, C. M., Cargill, G. S., Harmer, M. P., Chan. H. M., and Cho, J., Acta Mater. 47 (1999), 3411CrossRefGoogle Scholar
  68. Warren, B. E., X-Ray Diffraction, Dover, New York 1969 Google Scholar
  69. Winterer, M., Nitsche, R., and Hahn, H., Nanostruct. Mater. 9 (1997), 397CrossRefGoogle Scholar
  70. Zhao, J. and Montano, P. A., Phys. Rev. B40 (1989), 3401CrossRefGoogle Scholar
  71. Zschech, E., Auerswald, G., Klinkenberg, E. D., and Novgorodov, B. N., Nucl. Inst. Methods A308 (1991), 255CrossRefGoogle Scholar
  72. Allen, M. P., and Tildesley, D. J., “Computer Simulation of Liquids”, Clarendon Press, Oxford 1987Google Scholar
  73. Bawendi, M. G., Kortan, A. R., Steigerwald, M. L., and Brus, L. E., J. Chem. Phys. 91 (1989), 7282CrossRefGoogle Scholar
  74. Bunker, G., Nucl. Instr. Meth. 207 (1983), 437CrossRefGoogle Scholar
  75. Crozier, E. D., Rehr, J. J., and Ingalls, R., “Amorphous and Liquid Systems”, chapter 9 in “X-Ray Absorption - Principles, Applications, Techniques of EXAFS, SEAXFS and XANES”, edited by Koningsberger, D.C., and Prins, R., J. Wiley and Sons, Ney York 1988, 373Google Scholar
  76. Cusack, N. E., The Physics of Structurally Disordered Matter, IOP Publishing Ltd 1987, 30Google Scholar
  77. Elliot, S. R., J. Phys. Condens. Matter 4 (1992), 7661CrossRefGoogle Scholar
  78. Elliot, S. R., Phys. Rev. Lett. 67 (1991), 711CrossRefGoogle Scholar
  79. Elliot, S. R., “Physics of Amorphous Materials”, 2nd edition, Longman, Harlow 1990Google Scholar
  80. Filiponi, J. Phys. Cond. Matter 6 (1996), 5136Google Scholar
  81. Gurman, S.J. and McGreevy, R.L., J. Phys. Cond. Matter 2 (1990), 9463CrossRefGoogle Scholar
  82. Howard, C. J., Hill, R. J., and Reichert, B. E., Acta Cryst. B44 (1988), 116CrossRefGoogle Scholar
  83. Howe, M. A., McGreevy, R. L., and Pusztai, L., “Documentation on MCGR”, Studsvik 1996Google Scholar
  84. Keen, D. A., McGreevy R. L., Nature, 344 (1990), 423CrossRefGoogle Scholar
  85. Kincaid, B. M. and Eisenberger, P., Phys. Rev. Lett. 34 (1975), 1361Google Scholar
  86. Lee, P. A., Citrin, P. H., Eisenberger, P., and Kincaid, B. M., Rev. Mod. Phys. 53 (1981), 769CrossRefGoogle Scholar
  87. McGreevy, R. L. and Howe, M. A., J. Phys. Cond. Matt. 1 (1989), 9957CrossRefGoogle Scholar
  88. McGreevy, R. L., and Howe, M. A., Annu. Rev. Mater. Sci. 22 (1992), 217CrossRefGoogle Scholar
  89. McGreevy, R. L., Howe, M. A., and Wicks, J. D. D., “RMC Program Documentation and Supplementary Package” 1993Google Scholar
  90. McGreevy, R. L., Int. J. Mod. Phys. B 7 (1993) 2965Google Scholar
  91. McGreevy, R. L., J. Non-Cryst. Sol. 156–158 (1993), 949CrossRefGoogle Scholar
  92. McGreevy, R. L., Nucl. Instr. Meth. A 354 (1995), 1 )CrossRefGoogle Scholar
  93. McGreevy, R. L., Pusztai, L., Mol. Simul. 1 (1988), 359CrossRefGoogle Scholar
  94. Neubeck, K. Nitsche, R., Hahn, H. Alberts, L., Wolf, G.K., and Friz, M., Nucl. Instr. and Meth. in Phys. Res. B 106 (1995), 110Google Scholar
  95. Newville, M., Livins, P., Yacoby, Y., Rehr, J. J., and Stern, E.A. Phys. Rev. B 47 (1993), 14126CrossRefGoogle Scholar
  96. Nitsche, R., unpublished resultsGoogle Scholar
  97. Press, W.H., Flannery, B.P., Teukolsky, S. A., and Vetterling, W. T., “Numerical Recipes”, Cambridge 1986Google Scholar
  98. Price, D. L., Phys. Rev. B 59 (1999), 5CrossRefGoogle Scholar
  99. Rehr, J.J., Mustre de Leon, J., Zabinsly, S.I., and Albers, R.C., J. Am. Chem. Soc. 113 (1991), 5135CrossRefGoogle Scholar
  100. Richardson, J. W., chapter 6, “Background modelling in Rietveld analysis”, in Young, R. A. (ed.), “The Rietveld Method”, International Union of Crystallography, Oxford University Press 1993Google Scholar
  101. Rodriguez-Carvajal, J., Saclay 1997Google Scholar
  102. Sayers, D. E. and Bunker, B. A., “Data Analysis”, chapter 6 in “X-Ray Absorption - Principles, Applications, Techniques of EXAFS, SEAXFS and XANES”, edited by Koningsberger, D.C., and Prins, R., J. Wiley and Sons, Ney York 1988, 211Google Scholar
  103. Schröder, K., “Anordnung von Atomen und Molekülen in Kristallen, Gläsern, Fliissigkeiten und Polymeren”, chapter A 5 in “Streumethoden zur Untersuchung kondensierter Materie”, For-schungszentrum Jiilich 1996 Google Scholar
  104. Stern, E. A., Theory of EXAFS, chapter 1 in “X-Ray Absorption - Principles, Applications, Techniques of EXAFS, SEAXFS and XANES”, edited by Koningsberger, D.C., and Prins, R., J. Wiley and Sons, Ney York 1988,3 Google Scholar
  105. Susman, S., Volin, K. J., Montague, D. G., and Price, D. L., Phys. Rev. B 43 (1991), 11076Google Scholar
  106. Teo, B. K., “EXAFS: Basic Principles and Data Analyis”, Springer Berlin 1986 Google Scholar
  107. Vashishta, P., Kalia, R. K., Rino, J. P., Ebbsjö, I., Phys. Rev. B 41 (1990), 12197 )Google Scholar
  108. Warren, B. E., “X-ray Diffraction”, Addison-Wesley, Reading 1969 Google Scholar
  109. Waseda, Y., “Novel Application of Anomalous (Resonance) X-ray Scattering for Structural Characterization of Disordered Materials”, Springer, Heidelberg 1984 CrossRefGoogle Scholar
  110. Waseda, Y., “The Structure of Non-Crystalline Materials, Liquids and Amorphous Solids” McGraw-Hill New York 1980 Google Scholar
  111. Winterer, M., Delaplane, R., and McGreevy, R., J. Appl. Cryst. 2002, in printGoogle Scholar
  112. Winterer, M., J. Appl. Phys. 88 (2000), 5635CrossRefGoogle Scholar
  113. Winterer, M., J. Phys. IV France 7 (1997), C2–243Google Scholar
  114. Yasukawa, K., Terashi, Y., and Nakayama, A., J. Am. Ceram. Soc. 81 (1998), 2978Google Scholar
  115. Young, R. A., chapter 1 in, “Introduction to the Rietveld method”, pp. 1 in Young, R. A. (ed.), “The Rietveld Method”, International Union of Crystallography, Oxford University Press 1993 Google Scholar
  116. Zabinsky, S. I., Rehr, J. J., Ankudinov, A., Albers, R. C., and Eller, M. J., Phys. Rev. B52 (1995), 2995Google Scholar
  117. Burnett, M. N., and C. K. Johnson, ORTEP-III, “Oak Ridge Thermal Ellipsoid Plot Program For Crystal Structure Illustrations”, ORNL-6895, Oak Ridge National Laboratory 1996 Google Scholar
  118. Frey, F., Boysen. H., and Vogt, T., Acta Cryst. B46 (1990), 724CrossRefGoogle Scholar
  119. Ho, S. M., Mater. Sci. Eng. 54 (1982), 23Google Scholar
  120. Howard, C.J., Hill, R.J., Reichert, B.E., Acta Cryst. B44 (1988), 116Google Scholar
  121. Jansen, H. J., Phys. Rev. B43 (1991), 7267Google Scholar
  122. Landron, C., Douy, A., and Bazin, D., Phys. Stat. Sol. B184 (1994), 299CrossRefGoogle Scholar
  123. Li, P., Chen, I.W., and Penner-Hahn, J. E., Phys. Rev. B48 (1993), 10063CrossRefGoogle Scholar
  124. Livage, J., Doi, K., and Mazieres, C., J. Am. Ceram. Soc. 51 (1968), 349CrossRefGoogle Scholar
  125. McGreevy, R. L., RMC Program Documentation and Supplementary Package 1993 Google Scholar
  126. Neubeck, K. Nitsche, R., Hahn, H. Alberts, L., Wolf, G.K., and Friz, M., Nucl. Instr. and Meth. in Phys. Res. B 106 (1995), 110Google Scholar
  127. Nitsche, R., unpublished resultsGoogle Scholar
  128. Smith, D. K., and Newkirk, H. W., Acta Cryst. 18 (1965), 983CrossRefGoogle Scholar
  129. Stachs, P., Gerber, T., and Petkov, V., J. Non-Cryst. Solids 210 (1997), 14CrossRefGoogle Scholar
  130. Tanaka, T., Salama, T.M., Yamguchi, T., and Tanabe, K., J. Chem. Soc. Faraday Trans. 86 (1990), 467Google Scholar
  131. Winterer, M., to be publishedGoogle Scholar
  132. Winterer, M., J. Appl. Phys. 88 (2000), 5635CrossRefGoogle Scholar
  133. Howard, C. J., Hill, R. J., and Reichert, B. E., Acta Cryst. B44 (1988), 116CrossRefGoogle Scholar
  134. Sears, V. F. F., “Thermal-Neutron Scattering Length and Cross Sections For Condensed Matter Re-search”, Atomic Energy of Canada Ltd. Report AECL-8490, 1984, updated version 1991Google Scholar
  135. Ayyub, P., Palkar, V. R., Chattopadhyay,S., and Multani, M., Phys. Rev., B51 (1995), 6135Google Scholar
  136. Bernstein, E., Blanchin, M. G., Ravelle-Chapuis, R., Rodriguez-Varvajal, J., J. Mat. Sci. 27 (1992), 6519CrossRefGoogle Scholar
  137. Frey, F., Boysen, H., and Vogt, T., Acta Cryst. B46 (1990), 724CrossRefGoogle Scholar
  138. Garvie, R. C., J. Phys. Chem., 82 (1978), 218CrossRefGoogle Scholar
  139. Howard, C. J., Hill, R. J., and Reichert, B. E., Acta Cryst. B44 (1988), 116CrossRefGoogle Scholar
  140. Li, P., Chen, I. W., and Penner-Hahn, J. E., Phys. Rev. B48 (1993), 10063CrossRefGoogle Scholar
  141. Moreau, S., Gervais, M., and Douy, A., Solid State Ionics 101–103 (1997), 625Google Scholar
  142. Nitsche, R., Rodewald, M., Skandan, G., Fuess, H., and Hahn, H., Nanostruct. Mater. 7 (1996), 535CrossRefGoogle Scholar
  143. Stichert, W. and Schüth, F., Chem. Mater. 10 (1998), 2020Google Scholar
  144. Teufer, G., Acta Cryst. 15 (1962), 1187CrossRefGoogle Scholar
  145. Winterer, M., Delaplane, R., and McGreevy, R., J. Appl. Cryst. 2002, in printGoogle Scholar
  146. Winterer, M., Nitsche, R., Redfern, S. A. T., Schmahl, W. W., and Hahn, H., Nanostruct. Mater. 5 (1995), 679Google Scholar
  147. Balmer, M. L., Eckert, H., Das, N., and Lange, F., J. Am. Ceram. Soc. 79 (1996), 321CrossRefGoogle Scholar
  148. Hahn, T. (ed.) “International Tables for Crystallography”, 3rd editon, Kluwer Academic Publishers, Dordrecht 1993 Google Scholar
  149. Levin, I., and Brandon, D., J. Am. Ceram. Soc. 81 (1998), 1995Google Scholar
  150. Li, P., Chen, I. W., and Penner-Hahn, J. E., Phys. Rev. B48 (1993), 10063CrossRefGoogle Scholar
  151. Moreau, S., Gervais, M., and Douy, A., Solid State Ionics 101–103 (1997), 625Google Scholar
  152. Sears, V. F. F., “Thermal-Neutron Scattering Length and Cross Sections For Condensed Matter Research”, Atomic Energy of Canada Ltd. Report AECL-8490, 1984, updated version 1991Google Scholar
  153. Stevens, R., “Engineering Properties of Zirconia”, in Schneider, S. J. (ed.) Ceramics and Glasses, ASM International 1991, 776 Google Scholar
  154. Weirich, T., to be publishedGoogle Scholar
  155. Winterer, M., to be publishedGoogle Scholar
  156. Zabinsky, S. I., Rehr, J. J., Ankudinov, A., Albers, R. C., and Eller, M. J., Phys. Rev. B52 (1995), 2995Google Scholar
  157. Zhou, R.-S., and Snyder, R. L., Acta Cryst. B47 (1991), 617Google Scholar
  158. Catlow, C. R. A., Chadwick, A. V., Greaves, G. N., and Moroney, L. M., J. Am. Ceram. Soc. 69 (1986), 272CrossRefGoogle Scholar
  159. Ishizawa, N., Matsushima, Y., Hayashi, M., and Ueki, M., Acta Cryst. B55 (1999), 726CrossRefGoogle Scholar
  160. Howard, C. J., Hill, R. J., and Reichert, B. E., Acta Cryst. B44 (1988), 116CrossRefGoogle Scholar
  161. Li, P., Chen, I. W., and Penner-Hahn, J. E., Phys. Rev. B48 (1993), 10074CrossRefGoogle Scholar

6 Conclusions and Perspectives

  1. Balmer, M. L., Eckert, H., Das, N., and Lange, F. F., J. Am. Ceram. Soc. 79 (1996), 321 Chatterjee, A., Kalia, R. K., Nakano, A., Omeltchenko, A., Tsuruta, K., and Vashishta, P., C K. Loong, M. Winterer, and S. Klein, Appl. Phys. Lett., 77 (2000), 1132Google Scholar
  2. Freitag, B., and Mader, W., J. Microscopy 194 (1999), 42CrossRefGoogle Scholar
  3. Gurman, S. J., and Mcgreevy, R. L., J. Phys. Cond. Matter 2 (1990), 9463CrossRefGoogle Scholar
  4. Klein; S., Winterer, M., and Hahn, H., Chem. Vap. Dep. 4 (1998), 143CrossRefGoogle Scholar
  5. Kruis, F. E., Kusters, K. A., Pratsinis, S. E., and Scarlett, B., Aerosol Sci. Techn. 19 (1993), 514 Lindackers, D., Strecker, M. D. G., and Roth, P., Nanostruct. Mat. 4 (1994), 545Google Scholar
  6. Ozin, Adv. Mater. 4 (1992), 612Google Scholar
  7. Prost, W., F. E. Kruis, Otten, F., Nielsch, K., Rellinghaus, B., Auer, U., Peled, A., Wassermann, E. F., Fissan, H., Tegude, F. J., Microelectronic Engineering 41 /42 (1998), 535CrossRefGoogle Scholar
  8. Schönholzer, U. P. and Gaukler, L. J., Adv. Mater. 11 (1999), 630CrossRefGoogle Scholar
  9. Seifried, S., Winterer, M., and Hahn, H., Chem. Vap. Dep. 6 (2000), 239CrossRefGoogle Scholar
  10. Seifried, S., Winterer, M., and Hahn, H., in “Functionally Graded Materials 1998”, Kaysser, W., A. (ed.), Trans Tech Publications 1999,277 Google Scholar
  11. Srdic, V., Winterer, M. and Hahn, H., J. Am. Ceram. Soc. 83 (2000a), 729CrossRefGoogle Scholar
  12. Srdic, V., Winterer, M. and Hahn, H., J. Am. Ceram. Soc. 83 (2000b), 1853Google Scholar
  13. Srdic, V., Winterer, M. MöIler, A., and Miehe, G., and Hahn, H., J. A.. Ceram. Soc., 84 (2001), 2771Google Scholar
  14. Tsantilis, S., Pratsinis, S. E., AICHe Journal, in print 2000 Google Scholar
  15. Tsantilis, S., Pratsinis, S. E., and Hass, V., in “Advanced Technologies for Particle Processing” AICHe, Miami 1998, p. 264Google Scholar
  16. Veith, M., Altherr, A., and Wolfganger, H., Chem. Vap. Dep. 5 (1999), 87CrossRefGoogle Scholar
  17. Wang, Z. L., Harfenist, S. A., and Whetten, R. L., Bentley, J., and Evans, N. D., J. Phys. Chem. B 102 (1998), 3068Google Scholar
  18. Winterer, M., Delaplane, R., and McGreevy, R., J. Appl. Cryst. 2002, in printGoogle Scholar
  19. Winterer, M., J. App. Phys. 88 (2000), 5635CrossRefGoogle Scholar
  20. Winterer, M., submitted to Chem. Eng. Sci. 2002Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Markus Winterer
    • 1
  1. 1.Institute of Materials ScienceTU DarmstadtDarmstadtGermany

Personalised recommendations