Advertisement

Local Structure and Long Range Order

  • Markus Winterer
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 53)

Abstract

Crystals are distinguished from other states of matter by the existence of long range order or periodicity (crystallographic structure). Glasses or amorphous materials lack long range order. Nevertheless, it is possible that bond distances and coordination numbers (short range order or local structure) exhibit narrow distributions (Elliot 1990). The disorder in glasses is homogeneously distributed whereas in nanocrystalline solids a heterogenously distributed disorder (Gleiter 1992) is generated by interrupting the periodicity of crystals by interfaces creating a material with disorder in the local structure as well as long range order. A simple model of nanocrystalline materials distinguishes between crystalline grains and a network of interfaces, i.e. grain boundaries and pore surfaces (compare Sect. 4.1).

Keywords

Range Order Pair Distribution Function XANES Spectrum Monoclinic Zirconia Zirconium Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

5.1 Background

  1. Babanov, Y., A., Golovchikova, I. V., Boscherini, F., Haubold, T., and Mobilio, S., Nucl. Inst. Meth. Phys. Res. A359 (1995), 231Google Scholar
  2. Balmer, M. L., Lange, F. F., and Levi, C. G., J. Am. Ceram. Soc. 77 (1994), 2069Google Scholar
  3. Balmer, M. L., Eckert, H., Das, N., Lange, F. F., J. Am. Ceram. Soc. 79 (1996), 321CrossRefGoogle Scholar
  4. Bawendi, M. G., Kortan, A. R., Steigerwald, M. L., and Brus, L. E., J. Chem. Phys. 91 (1989), 7282CrossRefGoogle Scholar
  5. Benfield, R. E., Filiponi, A., Bowron, D. T., Newport, R. J., Gurman, S. J., and Schmid, G., Physica B208–209 (1995), 671Google Scholar
  6. Boysen, H., Frey, F., and Vogt, T., Acta Cryst. B47 (1991), 881CrossRefGoogle Scholar
  7. Brook, H. C., Chadwick, A. V., Kennedy, K. M., Morgante, N., Rafeletos, G., Tomba, A., Roberts, M. A., Mat. Sci. Forum, 239–241 (1997), 683CrossRefGoogle Scholar
  8. Catlow, C. R. A., Chadwick, A. V., Greaves, G. N., and Moroney, L. M., J. Am. Ceram. Soc. 69 (1986), 272CrossRefGoogle Scholar
  9. Chemseddine, A., Fieber-Erdmann, Holub-Krappe, E., and Boumaaz, S., Z. Phys. D 40 (1997), 566Google Scholar
  10. Cohen, R. L., Feldman, L. C., West, K. W., and Kincaid, B. M., Phys. Rev. Lett. 49 (1982), 1416Google Scholar
  11. Cornas, A., Moundjoy, G., Piccaluga, G., and Solinas, S., J. Phys. Chem. B 103 (1999), 10081Google Scholar
  12. Crozier, E. D., Rehr, J. J.,and Ingalls, R., “Amorphous and Liquid Systems”, chapter 9 in “X-Ray Absorption - Principles, Applications, Techniques of EXAFS, SEAXFS and XANES”, edited by Koningsberger, D.C., and Prins, R., J. Wiley and Sons, Ney York 1988, 373 Google Scholar
  13. Demourgues, A., Greaves, G. N., Bilsborrow, R., Baker, G., Sery, A., Dent, A. J., and Speit, B., Physica B208–209 (1995), 354Google Scholar
  14. Deng, H., Qiu, H., and Shi, G., Physica B208–209 (1995), 591Google Scholar
  15. Di Cicco, A., Berretoni, M., Stizza, S., Bonetti, E., and Cocco, G., Phys. Rev. B50 (1994), 12386CrossRefGoogle Scholar
  16. Dubiel, M., Brunsch, S., and Tröger, L., J. Phys. Condens. Matter 12 (2000), 4775CrossRefGoogle Scholar
  17. Eastman, J. A., Fitzsimmons, M. R., Müller-Stach, M., Wallner, G., and Elam, W. T., Nanostruct. Mater. 1 (1992)Google Scholar
  18. Ehrhart, P., “Röntgenstreuung und EXAFS”, chapter A 4 in “Physik der Nanostrukturen”, Forschungszentrum Jülich 1998 Google Scholar
  19. Elliot, S. R., “Physics of Amorphous Materials”, Longman Burnt Hill 1990 Google Scholar
  20. Esquivias, L., Barrero-Solano, C., Pinero, M., Prietro, C., J. Alloys Compounds 239 (1996), 71CrossRefGoogle Scholar
  21. Frey, F., Boysen, H., and Vogt, T., Acta Cryst. B46 (1990), 724CrossRefGoogle Scholar
  22. Garvie, R. C., J. Phys. Chem. 82 (1978), 218CrossRefGoogle Scholar
  23. Gleiter, H., Advanced Materials 4 (1992), 474Google Scholar
  24. Haubold, T., Birringer, R., Lengeler, B., and Gleiter, H., Phys. Lett. 135 (1989), 461CrossRefGoogle Scholar
  25. Haubold, T., Boscherini, F., Pascarelli, S., Mobilio, S., and Gleiter, H., Phil. Mag. A66 (1992), 591CrossRefGoogle Scholar
  26. Howard, C.J., Hill, R.J., Reichert, B.E., Acta Cryst. B44 (1988), 116CrossRefGoogle Scholar
  27. Ishizawa, N., Matsushima, Y., Hayashi, M., Ueki, M., Acta Cryst. B55 (1999), 726 Jimenez, C., Esquivias, L., and Prietro, C., J. Alloys Compounds 228 (1995), 188Google Scholar
  28. Kondoh, J., Kikuchi, S., Tomii, Y., Ito, Y., J. Electrochem. Soc. 145 (1998), 1550Google Scholar
  29. Krill, C. E., and Birringer, R., Phil. Mag. 77 (1998), 621Google Scholar
  30. Kuroda, H., Yokoyama, T., Asakura, K., and Iwasawa, Y., Faraday Disc. 92 (1991), 189 Kwei, G. H., Billinge, S. J. L., Cheong, S.W., und J.G. Saxton, Ferroelectrics, 164 (1995), 57Google Scholar
  31. Landron, C., Douy, A., and Bazin, D., Phys. Stat. Sol. B184 (1994), 299CrossRefGoogle Scholar
  32. Landron, C., Mater. Sci. Eng. B. B41 (1996), 217CrossRefGoogle Scholar
  33. Leger, J. M., Tomaszewski, P. E., Atouf, A., and Pereira, A. S., Phys. Rev. B47 (1993), 14075CrossRefGoogle Scholar
  34. Li, P., Chen, I. W., and Penner, Hahn, J. E., J. Am. Ceram. Soc. 77 (1994), 118CrossRefGoogle Scholar
  35. Li, P., Chen, I. W., and Penner, Hahn, J. E., J. Am. Ceram. Soc. 77 (1994), 1281Google Scholar
  36. Li, P., Chen, I. W., and Penner, Hahn, J. E., J. Am. Ceram. Soc. 77 (1994), 1289Google Scholar
  37. Li, P., Chen, I. W., and Penner, Hahn, J. E., Phys. Rev. B48 (1993), 10063CrossRefGoogle Scholar
  38. Li, P., Chen, I. W., and Penner, Hahn, J. E., Phys. Rev. B48 (1993), 10074CrossRefGoogle Scholar
  39. Li, P., Chen, I. W., and Penner, Hahn, J. E., Phys. Rev. B48 (1993), 10082CrossRefGoogle Scholar
  40. Lutzenkirchen-Hecht, D., Buchner, P., Uhlenbusch, J., Streblow, H.-H., Frahm, R., J. Synchro-tron Rad. 6 (1999), 722CrossRefGoogle Scholar
  41. Marcus, M. A., Brus, L. E., Murray, C., Bawendi, M. G., Prasad, A., Alivisatos, A. P., Nanos-truct. Mater. 1 (1992), 323CrossRefGoogle Scholar
  42. Marcus, M. A., Flood, W., Steigerwald, M., Brus, L., and Bawendi, M. J. Phys. Chem. 95 (1991), 1572Google Scholar
  43. Michel, D., Gaffet, E., Berthet, P., Nanostruct. Mater. 6 (1997), 667CrossRefGoogle Scholar
  44. Mikkelsen, J. C. and Boyce, J. B., Phys. Rev. Lett. 49 (1982), 1412Google Scholar
  45. Mikkelsen, J. C. and Boyce, J. B., Phys. Rev. B 28 (1983), 7130Google Scholar
  46. Molenbroek, A. M., Haukka, S., and Clausen, B. S., J. Phys. Chem. B102 (1998), 10680Google Scholar
  47. Moller, K., and Bein, T., J. Phys. Chem. 94 (1990), 845CrossRefGoogle Scholar
  48. Moller, K., Koningsberger, D. C., and Bein, T., J., Phys. Chem. 93 (1989), 6116 )CrossRefGoogle Scholar
  49. Montano, P. A., Schulze, W., Tesche, B., Shenoy, G. K., and Morrison, T. I., Phys. Rev. B30 (1984), 672CrossRefGoogle Scholar
  50. Mountjoy, G., Anderson, R., Newport, R. J., and Smith, M., E., J. Phys. Cond. Matter 12 (2000), 3505CrossRefGoogle Scholar
  51. Moreau, S., Gervais, M., and Douy, A., Sol. State Ionics 101–103 (1997), 625Google Scholar
  52. Niemann, W., Clausen, B., S., Hansen, L. B., Stolze, P., and Norskov, J. K., in Hasnain, S. S. (ed.), “X-Ray Absorption Fine Structure”, Ellis Horwood, New York 1991, 81Google Scholar
  53. Nitsche, R., Winterer, M., and Hahn, H., Nanostruct. Mater. 6 (1995), 679Google Scholar
  54. Nitsche, R., Winterer, M., Croft, M., and Hahn, H., Nucl. Inst. Methods B97 (1995), 127CrossRefGoogle Scholar
  55. Panfilis, S. de, d’Acapito, F., Haas, V., Konrad, H., Weissmtiller, J., and Boscherini, F., Phys. Lett. A207 (1995), 397Google Scholar
  56. Roberts, M. A., Mat. Sci. Forum 239–241 (1997), 683Google Scholar
  57. Scott, H. G. J. Mater. Sci. 10 (1975), 1527Google Scholar
  58. Sicron, N., Ravel, B., Yacoby, Y., Stern, E.A., Dogan, F., Rehr, J.J., Phys. Rev. B50 (1994), 13168CrossRefGoogle Scholar
  59. Smith, D. K., and Newkirk, H. W., Acta Cryst. 18 (1965), 983CrossRefGoogle Scholar
  60. Soo, Y. L., Ming, Z. H., Hunag, S. W., Kao, Y. H., Bhargava, R. N., and Gallagher, D., Phys. Rev. B50 (1994), 7602Google Scholar
  61. Stern, E. A. and Yacoby, Y., J. Phys. Chem. Sol. 57 (1996), 1449Google Scholar
  62. Stern, E. A., Siegel, R. W., Newville, M., Sanders, P. G., and Haskel, D., Phys. Rev. Lett. 75 (1995), 3874CrossRefGoogle Scholar
  63. Tanaka, T., Salama, T.M., Yamaguchi, T., and Tanabe, K., J. Chem. Soc. Faraday Trans. 86 (1990), 467Google Scholar
  64. Tao, Y., Zhao, G., Ju, X., Shao, X, Zhang, W., and Xia, S., Mat. Lett. 28 (1996), 137CrossRefGoogle Scholar
  65. Tran, N., H., H.rtmann, A. J., and Lamb, R. N., J. Phys. Chem. 103 (1999), 4264Google Scholar
  66. Wang, Y., Lu, K., Wang, D., Wu, Z., and F. Z., J. Phys. Cond. Matter 6 (1994), 633CrossRefGoogle Scholar
  67. Wang, C. M., Cargill, G. S., Harmer, M. P., Chan. H. M., and Cho, J., Acta Mater. 47 (1999), 3411CrossRefGoogle Scholar
  68. Warren, B. E., X-Ray Diffraction, Dover, New York 1969 Google Scholar
  69. Winterer, M., Nitsche, R., and Hahn, H., Nanostruct. Mater. 9 (1997), 397CrossRefGoogle Scholar
  70. Zhao, J. and Montano, P. A., Phys. Rev. B40 (1989), 3401CrossRefGoogle Scholar
  71. Zschech, E., Auerswald, G., Klinkenberg, E. D., and Novgorodov, B. N., Nucl. Inst. Methods A308 (1991), 255CrossRefGoogle Scholar

5.2 Methodology of Data Analysis and Experimental Procedures

  1. Allen, M. P., and Tildesley, D. J., “Computer Simulation of Liquids”, Clarendon Press, Oxford 1987Google Scholar
  2. Bawendi, M. G., Kortan, A. R., Steigerwald, M. L., and Brus, L. E., J. Chem. Phys. 91 (1989), 7282CrossRefGoogle Scholar
  3. Bunker, G., Nucl. Instr. Meth. 207 (1983), 437CrossRefGoogle Scholar
  4. Crozier, E. D., Rehr, J. J., and Ingalls, R., “Amorphous and Liquid Systems”, chapter 9 in “X-Ray Absorption - Principles, Applications, Techniques of EXAFS, SEAXFS and XANES”, edited by Koningsberger, D.C., and Prins, R., J. Wiley and Sons, Ney York 1988, 373Google Scholar
  5. Cusack, N. E., The Physics of Structurally Disordered Matter, IOP Publishing Ltd 1987, 30Google Scholar
  6. Elliot, S. R., J. Phys. Condens. Matter 4 (1992), 7661CrossRefGoogle Scholar
  7. Elliot, S. R., Phys. Rev. Lett. 67 (1991), 711CrossRefGoogle Scholar
  8. Elliot, S. R., “Physics of Amorphous Materials”, 2nd edition, Longman, Harlow 1990Google Scholar
  9. Filiponi, J. Phys. Cond. Matter 6 (1996), 5136Google Scholar
  10. Gurman, S.J. and McGreevy, R.L., J. Phys. Cond. Matter 2 (1990), 9463CrossRefGoogle Scholar
  11. Howard, C. J., Hill, R. J., and Reichert, B. E., Acta Cryst. B44 (1988), 116CrossRefGoogle Scholar
  12. Howe, M. A., McGreevy, R. L., and Pusztai, L., “Documentation on MCGR”, Studsvik 1996Google Scholar
  13. Keen, D. A., McGreevy R. L., Nature, 344 (1990), 423CrossRefGoogle Scholar
  14. Kincaid, B. M. and Eisenberger, P., Phys. Rev. Lett. 34 (1975), 1361Google Scholar
  15. Lee, P. A., Citrin, P. H., Eisenberger, P., and Kincaid, B. M., Rev. Mod. Phys. 53 (1981), 769CrossRefGoogle Scholar
  16. McGreevy, R. L. and Howe, M. A., J. Phys. Cond. Matt. 1 (1989), 9957CrossRefGoogle Scholar
  17. McGreevy, R. L., and Howe, M. A., Annu. Rev. Mater. Sci. 22 (1992), 217CrossRefGoogle Scholar
  18. McGreevy, R. L., Howe, M. A., and Wicks, J. D. D., “RMC Program Documentation and Supplementary Package” 1993Google Scholar
  19. McGreevy, R. L., Int. J. Mod. Phys. B 7 (1993) 2965Google Scholar
  20. McGreevy, R. L., J. Non-Cryst. Sol. 156–158 (1993), 949CrossRefGoogle Scholar
  21. McGreevy, R. L., Nucl. Instr. Meth. A 354 (1995), 1 )CrossRefGoogle Scholar
  22. McGreevy, R. L., Pusztai, L., Mol. Simul. 1 (1988), 359CrossRefGoogle Scholar
  23. Neubeck, K. Nitsche, R., Hahn, H. Alberts, L., Wolf, G.K., and Friz, M., Nucl. Instr. and Meth. in Phys. Res. B 106 (1995), 110Google Scholar
  24. Newville, M., Livins, P., Yacoby, Y., Rehr, J. J., and Stern, E.A. Phys. Rev. B 47 (1993), 14126CrossRefGoogle Scholar
  25. Nitsche, R., unpublished resultsGoogle Scholar
  26. Press, W.H., Flannery, B.P., Teukolsky, S. A., and Vetterling, W. T., “Numerical Recipes”, Cambridge 1986Google Scholar
  27. Price, D. L., Phys. Rev. B 59 (1999), 5CrossRefGoogle Scholar
  28. Rehr, J.J., Mustre de Leon, J., Zabinsly, S.I., and Albers, R.C., J. Am. Chem. Soc. 113 (1991), 5135CrossRefGoogle Scholar
  29. Richardson, J. W., chapter 6, “Background modelling in Rietveld analysis”, in Young, R. A. (ed.), “The Rietveld Method”, International Union of Crystallography, Oxford University Press 1993Google Scholar
  30. Rodriguez-Carvajal, J., Saclay 1997Google Scholar
  31. Sayers, D. E. and Bunker, B. A., “Data Analysis”, chapter 6 in “X-Ray Absorption - Principles, Applications, Techniques of EXAFS, SEAXFS and XANES”, edited by Koningsberger, D.C., and Prins, R., J. Wiley and Sons, Ney York 1988, 211Google Scholar
  32. Schröder, K., “Anordnung von Atomen und Molekülen in Kristallen, Gläsern, Fliissigkeiten und Polymeren”, chapter A 5 in “Streumethoden zur Untersuchung kondensierter Materie”, For-schungszentrum Jiilich 1996 Google Scholar
  33. Stern, E. A., Theory of EXAFS, chapter 1 in “X-Ray Absorption - Principles, Applications, Techniques of EXAFS, SEAXFS and XANES”, edited by Koningsberger, D.C., and Prins, R., J. Wiley and Sons, Ney York 1988,3 Google Scholar
  34. Susman, S., Volin, K. J., Montague, D. G., and Price, D. L., Phys. Rev. B 43 (1991), 11076Google Scholar
  35. Teo, B. K., “EXAFS: Basic Principles and Data Analyis”, Springer Berlin 1986 Google Scholar
  36. Vashishta, P., Kalia, R. K., Rino, J. P., Ebbsjö, I., Phys. Rev. B 41 (1990), 12197 )Google Scholar
  37. Warren, B. E., “X-ray Diffraction”, Addison-Wesley, Reading 1969 Google Scholar
  38. Waseda, Y., “Novel Application of Anomalous (Resonance) X-ray Scattering for Structural Characterization of Disordered Materials”, Springer, Heidelberg 1984 CrossRefGoogle Scholar
  39. Waseda, Y., “The Structure of Non-Crystalline Materials, Liquids and Amorphous Solids” McGraw-Hill New York 1980 Google Scholar
  40. Winterer, M., Delaplane, R., and McGreevy, R., J. Appl. Cryst. 2002, in printGoogle Scholar
  41. Winterer, M., J. Appl. Phys. 88 (2000), 5635CrossRefGoogle Scholar
  42. Winterer, M., J. Phys. IV France 7 (1997), C2–243Google Scholar
  43. Yasukawa, K., Terashi, Y., and Nakayama, A., J. Am. Ceram. Soc. 81 (1998), 2978Google Scholar
  44. Young, R. A., chapter 1 in, “Introduction to the Rietveld method”, pp. 1 in Young, R. A. (ed.), “The Rietveld Method”, International Union of Crystallography, Oxford University Press 1993 Google Scholar
  45. Zabinsky, S. I., Rehr, J. J., Ankudinov, A., Albers, R. C., and Eller, M. J., Phys. Rev. B52 (1995), 2995Google Scholar

5.3 Crystalline and Amorphous Zironia

  1. Burnett, M. N., and C. K. Johnson, ORTEP-III, “Oak Ridge Thermal Ellipsoid Plot Program For Crystal Structure Illustrations”, ORNL-6895, Oak Ridge National Laboratory 1996 Google Scholar
  2. Frey, F., Boysen. H., and Vogt, T., Acta Cryst. B46 (1990), 724CrossRefGoogle Scholar
  3. Ho, S. M., Mater. Sci. Eng. 54 (1982), 23Google Scholar

5.4 Scattering and EXAFS Spectroscopy of monoclinic Zirconia

  1. Howard, C.J., Hill, R.J., Reichert, B.E., Acta Cryst. B44 (1988), 116Google Scholar
  2. Jansen, H. J., Phys. Rev. B43 (1991), 7267Google Scholar
  3. Landron, C., Douy, A., and Bazin, D., Phys. Stat. Sol. B184 (1994), 299CrossRefGoogle Scholar
  4. Li, P., Chen, I.W., and Penner-Hahn, J. E., Phys. Rev. B48 (1993), 10063CrossRefGoogle Scholar
  5. Livage, J., Doi, K., and Mazieres, C., J. Am. Ceram. Soc. 51 (1968), 349CrossRefGoogle Scholar
  6. McGreevy, R. L., RMC Program Documentation and Supplementary Package 1993 Google Scholar
  7. Neubeck, K. Nitsche, R., Hahn, H. Alberts, L., Wolf, G.K., and Friz, M., Nucl. Instr. and Meth. in Phys. Res. B 106 (1995), 110Google Scholar
  8. Nitsche, R., unpublished resultsGoogle Scholar
  9. Smith, D. K., and Newkirk, H. W., Acta Cryst. 18 (1965), 983CrossRefGoogle Scholar
  10. Stachs, P., Gerber, T., and Petkov, V., J. Non-Cryst. Solids 210 (1997), 14CrossRefGoogle Scholar
  11. Tanaka, T., Salama, T.M., Yamguchi, T., and Tanabe, K., J. Chem. Soc. Faraday Trans. 86 (1990), 467Google Scholar
  12. Winterer, M., to be publishedGoogle Scholar
  13. Winterer, M., J. Appl. Phys. 88 (2000), 5635CrossRefGoogle Scholar
  14. Howard, C. J., Hill, R. J., and Reichert, B. E., Acta Cryst. B44 (1988), 116CrossRefGoogle Scholar
  15. Sears, V. F. F., “Thermal-Neutron Scattering Length and Cross Sections For Condensed Matter Re-search”, Atomic Energy of Canada Ltd. Report AECL-8490, 1984, updated version 1991Google Scholar

5.5 Pure Nanocrystalline Zirconia Powder

  1. Ayyub, P., Palkar, V. R., Chattopadhyay,S., and Multani, M., Phys. Rev., B51 (1995), 6135Google Scholar
  2. Bernstein, E., Blanchin, M. G., Ravelle-Chapuis, R., Rodriguez-Varvajal, J., J. Mat. Sci. 27 (1992), 6519CrossRefGoogle Scholar
  3. Frey, F., Boysen, H., and Vogt, T., Acta Cryst. B46 (1990), 724CrossRefGoogle Scholar
  4. Garvie, R. C., J. Phys. Chem., 82 (1978), 218CrossRefGoogle Scholar
  5. Howard, C. J., Hill, R. J., and Reichert, B. E., Acta Cryst. B44 (1988), 116CrossRefGoogle Scholar
  6. Li, P., Chen, I. W., and Penner-Hahn, J. E., Phys. Rev. B48 (1993), 10063CrossRefGoogle Scholar
  7. Moreau, S., Gervais, M., and Douy, A., Solid State Ionics 101–103 (1997), 625Google Scholar
  8. Nitsche, R., Rodewald, M., Skandan, G., Fuess, H., and Hahn, H., Nanostruct. Mater. 7 (1996), 535CrossRefGoogle Scholar
  9. Stichert, W. and Schüth, F., Chem. Mater. 10 (1998), 2020Google Scholar
  10. Teufer, G., Acta Cryst. 15 (1962), 1187CrossRefGoogle Scholar
  11. Winterer, M., Delaplane, R., and McGreevy, R., J. Appl. Cryst. 2002, in printGoogle Scholar
  12. Winterer, M., Nitsche, R., Redfern, S. A. T., Schmahl, W. W., and Hahn, H., Nanostruct. Mater. 5 (1995), 679Google Scholar

5.6 Nanocrystalline Zirconia Doped with Alumina

  1. Balmer, M. L., Eckert, H., Das, N., and Lange, F., J. Am. Ceram. Soc. 79 (1996), 321CrossRefGoogle Scholar
  2. Hahn, T. (ed.) “International Tables for Crystallography”, 3rd editon, Kluwer Academic Publishers, Dordrecht 1993 Google Scholar
  3. Levin, I., and Brandon, D., J. Am. Ceram. Soc. 81 (1998), 1995Google Scholar
  4. Li, P., Chen, I. W., and Penner-Hahn, J. E., Phys. Rev. B48 (1993), 10063CrossRefGoogle Scholar
  5. Moreau, S., Gervais, M., and Douy, A., Solid State Ionics 101–103 (1997), 625Google Scholar
  6. Sears, V. F. F., “Thermal-Neutron Scattering Length and Cross Sections For Condensed Matter Research”, Atomic Energy of Canada Ltd. Report AECL-8490, 1984, updated version 1991Google Scholar
  7. Stevens, R., “Engineering Properties of Zirconia”, in Schneider, S. J. (ed.) Ceramics and Glasses, ASM International 1991, 776 Google Scholar
  8. Weirich, T., to be publishedGoogle Scholar
  9. Winterer, M., to be publishedGoogle Scholar
  10. Zabinsky, S. I., Rehr, J. J., Ankudinov, A., Albers, R. C., and Eller, M. J., Phys. Rev. B52 (1995), 2995Google Scholar
  11. Zhou, R.-S., and Snyder, R. L., Acta Cryst. B47 (1991), 617Google Scholar

5.7 Nanocrystalline Zirconia Doped with Yttria

  1. Catlow, C. R. A., Chadwick, A. V., Greaves, G. N., and Moroney, L. M., J. Am. Ceram. Soc. 69 (1986), 272CrossRefGoogle Scholar
  2. Ishizawa, N., Matsushima, Y., Hayashi, M., and Ueki, M., Acta Cryst. B55 (1999), 726CrossRefGoogle Scholar
  3. Howard, C. J., Hill, R. J., and Reichert, B. E., Acta Cryst. B44 (1988), 116CrossRefGoogle Scholar
  4. Li, P., Chen, I. W., and Penner-Hahn, J. E., Phys. Rev. B48 (1993), 10074CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Markus Winterer
    • 1
  1. 1.Institute of Materials ScienceTU DarmstadtDarmstadtGermany

Personalised recommendations