Processing and Microstructure

  • Markus Winterer
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 53)

Abstract

The microstructure is defined by the type, crystal structure, number, shape and topological arrangement of phases and defects such as point defects, dislocations, stacking faults or grain boundaries in a crystalline material (Gleiter 1996). Nanocrystalline materials are polycrystalline solids with grain sizes below 100 nm (Gleiter 1989). Grains as well as pores, interfaces and other defects are of similar dimensions (see Fig. 4.1). This nano-specific microstructure (nanostructure) leads to chemical and physical size effects. The coincidence of methods for the synthesis of large quantities of such materials, new methods of analysis (e.g. HRTEM or STM), and the original idea of Gleiter that with the compaction of nanoparticles, novel materials with interesting microstructure and properties can be expected, provided the basis for the broad research field ‘nano-materials’ which has increased enormously over the last decade.

Keywords

Pore Size Distribution Alumina Content Zirconia Powder High Alumina Content Pure Zirconia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, A. J., Krueger, S., Skandan, G., Long, G. G., Hahn, H., Kerch, H. M., Parker, J. C., and Ali, M. N., J. Am. Ceram. Soc. 79 (1996), 1201Google Scholar
  2. Benker, A., diploma thesis, Darmstadt 1999Google Scholar
  3. Bennison, S. J., chapter “Grain Growth” in “Engineered Materials Handbook”, Volume 4 “Ceramics and Glasses”, Schneider, S. J., (chairman) ASM International, 1991, 304 Google Scholar
  4. Betz, U. and Hahn, H., Nanostruct. Mater. 12 (1999), 911CrossRefGoogle Scholar
  5. Betz, U., Hahn, H. and Padmanabhan, K. A., Acta Met., 2000, submittedGoogle Scholar
  6. Chen, D. J. and Mayo, M. J., J. Am. Ceram. Soc., 79 (1996), 906CrossRefGoogle Scholar
  7. Chen, I.-W., Wang, X.-H., Nature 404 (2000), 168CrossRefGoogle Scholar
  8. Chiang, Y.-M., Birnie, D., and Kingery, W. D., “Physical Ceramics - Principles for Ceramic Science and Engineering”, Wiley New York 1997 Google Scholar
  9. Coble, R. L., J. Appl. Phys. 32 (1961), 787CrossRefGoogle Scholar
  10. Duran, P., Villegas, M., Capel, F., Recio, P., and Moure, C., J. Euro. Ceram. Soc., 16 (1996), 945CrossRefGoogle Scholar
  11. Fotou G. P. and Toivo T. Kodas, T. T., Advanced Materials 9 (1997), 420CrossRefGoogle Scholar
  12. German, R. M., chapter “Fundamentals of Sintering” in “Engineered Materials Handbook”, Volume 4 “Ceramics and Glasses”, Schneider, S. J., (chairman) ASM International, 1991, 260 Google Scholar
  13. Gleiter, H., Progress in Materials Science 33 (1989), 223CrossRefGoogle Scholar
  14. Gleiter, H., “Microstructure” chapter 9 in Cahn, R. W. and Haasen, P. (eds.), “Physical Metallurgy”, fourth edition, Elsevier Science, London 1996, 844 Google Scholar
  15. Graaf, M. A. C. G. Van de and Burggraaf, A. J., in Advances in Ceramics, Vol. 2. Edited by Claussen, N., Rühle, M., and Heuer., A. H., American Ceramics Society, Columbus 1984, 744Google Scholar
  16. Groot Zevert., W. F. M., W.nnubst, A. J. A., Theunissen, G. S. A. M., and Burggraaf, A. J., J. Mater. Sci., 25 (1990), 3449Google Scholar
  17. Hahn, H. and Averback, R. S., J. Am. Ceram. Soc. 74 (1991), 2918Google Scholar
  18. Hahn H., and R. S. Averback, Nanostruct. Mater., 1 (1992), 95CrossRefGoogle Scholar
  19. Hahn, H., Nanostruct. Mater., 2 (1993), 251 Google Scholar
  20. Hahn, H., Logas, J., and Averback, R. S., J. Mater. Res. 5 (1990), 609 Google Scholar
  21. Hahn, H., Nanostruct. Mater. 2, (1993), 251 Google Scholar
  22. Herring, C., J. Appl. Phys., 2 (1950), 301 Google Scholar
  23. Hu, M. Z. C., Harris, M. T., and Byers, C. H., J. Coll. Int. Sci. 198 (1998), 87 Google Scholar
  24. Hu, M. Z. C., Hunt, R. D., Andrew, E. A., and Hubburd, C. R., J. Amer. Ceram. Soc. 82 (1999), 2313Google Scholar
  25. Hu, M. Z. C., Zielke, J. T., Lin, J. S., and Byers, C. H., J. Mat. Res. 14 (1999), 103 Google Scholar
  26. Inamura, S., Miyamoto, H., Imaida, Y., Takagawa, M., Hirota, K., and Yamaguchi, O., J. Mater. Sci. 29 (1994), 4913CrossRefGoogle Scholar
  27. Kanters, J., Eisele, U., and Rödel, J., Acta Mater. 48 (2000), 1239CrossRefGoogle Scholar
  28. Kimoto, S., Hirota, K., Yamaguchi, O., Kume, H., Inamura, S., and Miyamoto, H., J. Am. Ceram. Soc. 77 (1994), 1694Google Scholar
  29. Kingery, W. D., Bowen, H. K., and Uhlmann, D. R. R., “Introduction to Ceramics”, 2nd edition, Wiley New York 1976 Google Scholar
  30. Kumar, K. P., Kelzer, K., Burggraaf, A. J., Okuba, T., Nagamoto, H. and Morooka, S., Nature, 358 (1992), 48Google Scholar
  31. Lange, F. F. and Hirlinger, M.M., J. Am. Ceram. Soc., 70 (1987), 827CrossRefGoogle Scholar
  32. Liao, S.C., Chen, Y. J., Kear, B. H., and Mayo, W. E., Nanostruct. Mater. 10 (1998), 1063Google Scholar
  33. Liao, S. C., Mayo, W. E., and Pae, K. D., Acta Mater. 45 (1997), 4027CrossRefGoogle Scholar
  34. Mayo, M. J., Mater. Design, 14 (1993), 323 Google Scholar
  35. Mayo, M. J., in “Superplasticity in Advanced Materials”, Hori, S., Tokizane, M., and Furushiro. N., (eds.) The Japan Society for Research on Superplasticity, Japan, 1991,541 Google Scholar
  36. Mayo, M. J., and Chen, D. J., in “Synthesis and Processing of Nanocrystalline Powder”, Bourell, D. L., (ed.), The Minerals, Metals and Materials Soc., Warrendale, Pennsylvania, 1996,210 Google Scholar
  37. Mayo, M. J., Hague, D. C. and Chen, D. J., Mater. Sci. Engin., A166 (1993), 145CrossRefGoogle Scholar
  38. Mayo, M. J., Seidensticker, J. R., Hague, D. C., and Carim, A. H., Nanostruct. Mater. 11 (1999), 271CrossRefGoogle Scholar
  39. Nitsche, R., Rodewald, M., Skandan, G., Fuess, H., and Hahn, H., Nanostruct. Mater., 7 (1996), 535CrossRefGoogle Scholar
  40. Powell, Q. H., Kodas, T. T., and Anderson, B. M., Chem. Vap. Deposition 2 (1996), 179CrossRefGoogle Scholar
  41. Rajendran, J., Drennan, J., and Badwal, S. P. S., J. Mat. Sci. Lett. 6 (1987), 1431Google Scholar
  42. Rhodes, W. H., J. Am. Ceram. Soc., 64 (1981), 19CrossRefGoogle Scholar
  43. Sagel-Ransijn, C. D., Winnubst, A. J. A., Burggraaf, A. J., and Verweij, H., J. Euro. Ceram. Soc. 16 (1996), 759CrossRefGoogle Scholar
  44. Shi, J. L., Gao, J.H., Li, B. S., and Yen, T. S., J. Euro. Ceram. Soc., 15 (1995), 967CrossRefGoogle Scholar
  45. Skandan, G., “Processing of Nanostructured Zirconia Ceramics,” Nanostruct. Mater. 5 (1995), 111Google Scholar
  46. Skandan, G., Hahn, H., Kear, B. H., Roddy, M., and Cannon, W. R., Mater. Lett., 20 (1994), 305CrossRefGoogle Scholar
  47. Skandan, G., Hahn, H., Roddy, M., and Cannon, W. R., J. Am. Ceram. Soc., 77 (1994), 1706Google Scholar
  48. Srdic, V. V., Winterer, M., and Hahn, H., J. Am. Ceram. Soc. 83 (2000), 729CrossRefGoogle Scholar
  49. Srdic, V. V., Winterer, M., and Hahn, H., J. Am. Ceram. Soc., 83 (2000), 1853Google Scholar
  50. Srdic, V. V., Winterer, M., A. MöIler, G. Miehe and Hahn, H., J. Am. Ceram. Soc. 84 (2001), 2771Google Scholar
  51. Swinkels F. B. and Ashby, M. F., Acta Meta11. 29 (1981), 259Google Scholar
  52. Vollath, D. and Szabo, D.V., Nanostruct. Mater. 4 (1994), 927–938CrossRefGoogle Scholar
  53. Vollath, D., Szabo, D. V., and HauBelt, J., J. Eur. Ceram. Soc. 17 (1997), 1317Google Scholar
  54. Wakai, F., Sakaguchi, S., and Matsuno, Y., Adv. Ceram. Mater. 1 (1986), 259Google Scholar
  55. Wang, J. and Gao, K., Nanostruct. Mater. 11 (1999), 451CrossRefGoogle Scholar
  56. Wang, J., Ong, C. L., Gan L. M., and Ng, S. C., Mater. Letters, 27 (1996), 239CrossRefGoogle Scholar
  57. Winnubst, A. J. A., Theunissen, G. S. A. M., and Burggraaf, A. J., in “Euro Ceramics”, Vol 1., With, G. de, R. A. Terpstra, R. A., and R. Metselaar, R. (eds.), Elsevier, London 1989,393 Google Scholar
  58. Yamaguchi, O., Hirota, K., Inamura, S., and Miyamoto, H., in “Advanced Synthesis and Proc-essing of Composites and Advanced Ceramics”, Ceramic Transactions Vol. 56. The Ameri-can Ceramic Society 1995,353 Google Scholar
  59. Yan, M. F., chapter “Solid State Sintering” in “Engineered Materials Handbook”, Volume 4 “Ceramics and Glasses”, Schneider, S. J., (chairman) ASM International, 1991,304 Google Scholar
  60. Chu, B. (ed.), “Laser Light Scattering”, 2“d edition, Academic Press 1991 Google Scholar
  61. O’Brien, R. W. and White, L. W., J. Chem. Soc. Faraday II 74 (1978), 1607Google Scholar
  62. Barrett, E. P., Joyner, L. G., and Halenda, P. P., J. Am. Ceram. Soc. 73 (1951), 373 Anantharaman, T. R. and Christian, J. W., Acta Cryst., 9 (1956), 479Google Scholar
  63. Cullity, A. D., “Elements of X-Ray Diffraction”, Addison-Wesley, Reading, Massachusetts, 1978 Google Scholar
  64. Toraya, H., Yoshimura, M., and Somiya, S., J. Am. Ceram. Soc. 67 (1984) C119Google Scholar
  65. Howard, C. J., Hill, R. J., and Reichert, B. E., Acta Cryst. B44 (1988), 116CrossRefGoogle Scholar
  66. Levin, I., and D. Brandon, D., J. Am. Ceram. Soc. 81 (1998), 195Google Scholar
  67. Schmid, H. K., J. Am. Ceram. Soc. 70 (1987), 367CrossRefGoogle Scholar
  68. Allen, A. J., Krueger, S., Skandan, G., Long, G. G., Hahn, H., Kerch, H. M., Parker, J. C. and Ali, M. N., J. Am. Ceram. Soc. 79 (1996), 1201Google Scholar
  69. Ayyub, P., Palkar, V. R., Chattopadhyay,S., and Multani, M., Phys. Rev., B51 (1995), 6135 Bennison, S. J., chapter “Grain Growth” in “Engineered Materials Handbook”, Volume 4 “Ceramics and Glasses”, Schneider, S. J., (chairman) ASM International, 1991, 304 Google Scholar
  70. Bondars, B., Heidemane, G., Grabis, J., Laschke, K., Boysen, H., Scheider, J., Frey, F., J. Mater. Sci. 30 (1995), 1621Google Scholar
  71. Brook, R. J., J. Am. Ceram. Soc. 52 (1969), 56CrossRefGoogle Scholar
  72. Chen, D. J. and Mayo, M. J., Nanostruct. Mater. 2 (1993), 469CrossRefGoogle Scholar
  73. Chen, I. W., Mater. Sci. Engin., A166 (1993), 51CrossRefGoogle Scholar
  74. Chen, P. L. and Chen, I. W., J. Am. Ceram. Soc. 79 (1996), 1793Google Scholar
  75. Chen, P. L. and Chen, I. W., J. Am. Ceram. Soc. 79 (1996), 1801Google Scholar
  76. Chen, P. L. and Chen, I. W., J. Am. Ceram. Soc. 79 (1996), 3129CrossRefGoogle Scholar
  77. Chen, P. L. and Chen, I. W., J. Am. Ceram. Soc. 80 (1997), 637CrossRefGoogle Scholar
  78. Chiang, Y: M., Birnie, D., and Kingery, W. D., “Physical Ceramics - Principles for Ceramic Science and Engineering”, Wiley New York 1997 Google Scholar
  79. Duran, P., Villegas, M., Capel, F., Recio, P., and Moure, C., J. Euro. Ceram. Soc., 16 (1996), 945Google Scholar
  80. Flagan, R. C. and Lunden, M. M., Mater. Sci. Eng. A204 (1995), 113CrossRefGoogle Scholar
  81. Frey, F., Boysen, H., Vogt, T., Acta Cryst., B46 (1990), 724CrossRefGoogle Scholar
  82. Garvie, R. C., J. Phys. Chem., 82 (1978), 218Google Scholar
  83. Graaf, M. A. C. G. Van de, Ter Maat, J. H. H., and Burggraaf, A. J., J. Mater. Sci., 20 (1985), 1407Google Scholar
  84. Gregg, S. J. and Sing, K. S. W., “Adsorption, Surface Area and Porosity”, Academic Press 1982 Google Scholar
  85. Hahn, H., Logas, J., and Averback, R. S., J. Mater. Res. 5 (1990), 609CrossRefGoogle Scholar
  86. Hahn, H., Nanostruct. Mater. 2 (1993), 251Google Scholar
  87. John, W., “The Characteristics of Environmetal and Laboratory Generated Aerosols”, chapter 5, in “Aerosol Measurement - Principles, Techniquies and Applications”, K. Willeke and P. A. Baron (eds.), Van Nostrand Reinhold, New York, 1993, 59 Google Scholar
  88. Kingery, W. D. and Francois, B., in “Sintering and Related Phenomena”, Kuczynski, G. C., Hooton, N. A., and Gibbon, C. F., Gordon and Breach, New York 1967,23 Google Scholar
  89. Kingery, W. D., Bowen, H. K., and D. R. Uhlmann, “Introduction to Ceramics”, John Wiley and Sons, New York 1976 Google Scholar
  90. Klein, S., Winterer, M., and Hahn, H., Adv. Mater. (Chem. Vapor Depos.), 4 (1998), 143Google Scholar
  91. Mayo, M. J. and Chen, D. J., in “Synthesis and Processing of Nanocrystalline Powder”, Bourell, D. L. (ed.), Warrendale, Pensylvania: The Minerals, Metals and Materials Society 1996, 210 Google Scholar
  92. Mayo, M. J., and Hague, D. C., Nanostruct. Mater. 3 (1993), 43CrossRefGoogle Scholar
  93. Mayo, M. J., Hague, D. C., and Chen, D. J., Mater. Sci. Engin. A166 (1993), 145CrossRefGoogle Scholar
  94. Mayoral, R., Requena, J., Moya, J. S., Lopez, C., Cintas, A., Miguez, H., Meseguer, F., Vazquez, L., Holgado, M., and Blanco, A., Adv. Mater. 9 (1997), 257CrossRefGoogle Scholar
  95. Nitsche, R., Rodewald, M., Skandan, G., Fuess, H., and Hahn, H. Nanostruct. Mater. 7 (1996), 535Google Scholar
  96. Sagel-Ransijn, C. D., Winnubst, A. J. A., Burggraaf, A. J., and Verweij, H., J. Euro. Ceram. Soc., 16 (1996), 759CrossRefGoogle Scholar
  97. Skandan, G. and Hahn, H., unpublished results 1993Google Scholar
  98. Skandan, G., Hahn, H., Roddy, M. and Cannon, W. R., J. Am. Ceram. Soc., 77 (1994), 1706Google Scholar
  99. Skandan, G., Nanostruct. Mater. 5 (1995), 111CrossRefGoogle Scholar
  100. Stebens, R., “Engineering Properties of Zirconia”, in Schneider, S. J. (ed.), Engineered Materials Handbook volume 4, “Ceramics and Glasses”, ASM 1991, pp 775.Google Scholar
  101. Alexander, K. B., Becher, P. F., Waters, S. B., and Bleier, A., J. Am. Ceram. Soc. 77 (1994), 939CrossRefGoogle Scholar
  102. Balmer, M. L., Lange, F. F., and Levi, C. G., J. Am. Ceram. Soc. 77 (1994), 2069Google Scholar
  103. Balmer, M. L., Eckert, H., Das, N., and Lange, F. F., J. Am. Ceram. Soc. 79 (1996), 321CrossRefGoogle Scholar
  104. Bennison, S. J., “Grain Growth”, in “Engineering Materials Handbook”, volume 4: “Ceramics and Glasses”, ASM International 1991,304 Google Scholar
  105. Garvie, R. C., J. Phys. Chem. 82 (1978), 218CrossRefGoogle Scholar
  106. Hillert, M., Acta Metal. 36 (1988), 3177CrossRefGoogle Scholar
  107. Inamura, S., Miyamoto, H., Imaida, Y., Takagawa, M., Hirota, K., and Yamaguchi, O., J. Mater. Sci. 29 (1994), 4913CrossRefGoogle Scholar
  108. Kingery, W. D., and Francois, B., in “Sintering and Related Phenomena”, Kuczynski, G.C., Hooton, N. A., and Gibbon, C. F., (eds.), Gordon and Breach, New York, 1967,23 Google Scholar
  109. Kingery, W. D., Bowen, H., and Uhlmann, D. R., “Introduction to Ceramics”, Wiley, New York, 1976 Google Scholar
  110. Mayo, M. J., Hague, D. C., and Chen, D. J., Mater. Sci. Engin. A166 (1993), 145CrossRefGoogle Scholar
  111. Mayo, M. J., Mater. Design 14 (1993), 323CrossRefGoogle Scholar
  112. Mayoral, R., Requena, J., Moya, J. S., Lopez, C., Cintas, A., Miguez, H., Meseguer, F., Vazquez, L., Holgado, M., and Blanco, A., Adv. Mater., 9 (1997), 257CrossRefGoogle Scholar
  113. Scott, H. G., J. Mater. Sci. 10 (1975), 1527Google Scholar
  114. Srdic, V. V., and Savic, D. I., J. Mater. Sci. 33 (1998), 2391Google Scholar
  115. Srdic, V. V., Winterer, M. and Hahn, H., J. Am. Ceram. Soc. 83 (2000), 729CrossRefGoogle Scholar
  116. Srdic, V. V., Winterer, M. and Hahn, H., J. Am. Ceram. Soc. 83 (2000), 1853Google Scholar
  117. Garvie, R. C., J. Phys. Chem. 82 (1978), 218Google Scholar
  118. Kingery, W. D., and Francois, B., in “Sintering and Related Phenomena”, Kuczynski, G.C., Hooton, N. A., and Gibbon, C. F., (eds.), Gordon and Breach, New York, 1967,23 Google Scholar
  119. Kingery, W. D., Bowen, H., and Uhlmann, D. R., “Introduction to Ceramics”, Wiley, New York, 1976 Google Scholar
  120. Kung, H. H., J.Solid State Chemistry 52 (1984), 191Google Scholar
  121. Kung, H. H., “Transition Metal Oxides: Surface Chemistry and Catalysis”, Elsevier, Amsterdam 1989 Google Scholar
  122. Mayo, M. J., Hague, D. C., and Chen, D. J., Mater. Sci. Engin. A166 (1993), 145CrossRefGoogle Scholar
  123. Möller, A., 2000 to be publishedGoogle Scholar
  124. Parks, G. A., deBruyn, P. L., J. Phys. Chem. 66 (1962), 967CrossRefGoogle Scholar
  125. Srdic, V. V., Winterer, M., A. Möller, G. Miehe and Hahn, H., J. Am. Ceram. Soc. 84 (2001), 2771Google Scholar
  126. Wang, J. and Gao, L., Nanostr. Mater. 11 (1999), 451CrossRefGoogle Scholar
  127. Bhattacharya, S. S., private communication, Darmstadt 1999Google Scholar
  128. Chen, D.-J., and Mayo, M. J., Nanostruct. Mater. 2 (1993), 469CrossRefGoogle Scholar
  129. Duran, P., Villegas, M., Capel, F., Recio, P., and Moure, C., J. Eur. Ceram. Soc. 16 (1996), 945CrossRefGoogle Scholar
  130. Hughes, A. E., in Science of Ceramic Interfaces II, Nowotny, J. (ed.), Elsevier, Amsterdam 1994, 183Google Scholar
  131. Lange, F. F., J. Am. Ceram. Soc. 69 (1986), 240CrossRefGoogle Scholar
  132. Mondai, P., “Elektrische Eigenschaften nanokristalliner Y2O,-stabilisierter ZrO2 Keramiken”, Dissertation, Darmstadt 1998 Google Scholar
  133. Rhodes, J. Am. Ceram. Soc. 64 (1981), 19Google Scholar
  134. Theunissen, G. S. A. M., Winnubst, A. J. A., and Burggraaf, A. J., J. Eur. Ceram. Soc. 11 (1993), 315CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Markus Winterer
    • 1
  1. 1.Institute of Materials ScienceTU DarmstadtDarmstadtGermany

Personalised recommendations