Gas Phase Synthesis

  • Markus Winterer
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 53)

Abstract

Powders consisting of nanocrystalline particles can be produced by a large variety of methods based on solid state, liquid or gas phase processes. For an overview see Chow and Gonsalves (1996). Siegel (1991) described processes based on physical methods such as inert gas condensation or ball milling. Brinker and Scherer (1990) gave an overview of the synthesis of particulate sols and gels and compared them with vapor phase methods. Segal (1989) and Klabunde et al. (1994) gave an overview of different chemical methods.

Keywords

Combustion Titania Methane Dust Microwave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando, Y. and Ohkohchi, M., J. Cryst. Growth 60 (1982), 147CrossRefGoogle Scholar
  2. Baron, P. A., and Willeke, K., chapter 2, “Aerosol Fundamentals”, in Willeke, K. and Baron, P. A. (eds.) “Aerosol Measurement — Principles, Techniquies and Applications”, Van Nostrand Reinhold 1993, pp. 8Google Scholar
  3. Breiland, W.G. and Ho, P., chapter 3 “Analysis of Chemical Vapor Deposition Processes” in “Chemical Vapor Deposition”, Hitchman, M. L. and Jensen, K. F. (eds.), Academic Press London 1993,91 Google Scholar
  4. Brinker, C. J. and Scherer, G. W., Sol-Gel Science, Academic Press San Diego 1990 Google Scholar
  5. Bryant, W.A., “Review of the Fundamentals of CVD”, J. Mat. Science 12 (1977)Google Scholar
  6. Cannon, W. R., Danforth, S. C., Flint, J. H., Haggerty, J. S., and Marra, R.A., J. Am. Ceram. Soc. 65 (1982), 324CrossRefGoogle Scholar
  7. Capano, M. A. and Trew, R. J. (eds.), MRS Bulletin 3/1997 Google Scholar
  8. Chang, W., Skandan, S. C., Danforth, C., Kear, B. H., and Hahn, H., Nanostruct. Mat. 4 (1994), 507CrossRefGoogle Scholar
  9. Changhong, D., Xianpeng, Z., Jinsong, Z., Yongjin, Y., Lihna, C., and Fei, X., J. Mater. Sci. 32 (1997), 2469Google Scholar
  10. Chow, G.-M. and Gonsalves, K. E. (eds.), “Nanotechnology — Molecularly Designed Materials”, ACS Symposium Series vol. 662, American Chemical Society, Washington 1996 Google Scholar
  11. Flagan, R. C., and Lunden, M. M., Mat. Sci. and Eng. A204 (1995), 113CrossRefGoogle Scholar
  12. Flörke, O. W., Martin, B., Benda, L., Paschas, S., Bergna, H. E., Roberts, W.O., Welsh, W. A., Ettlinger, M., Kerner, D., Kleinschmit, P., Meyer, J., Gies, H., Schiffmann, D., chapter “Silica” in volume A23 of “Ullmann’s Encyclopedia of Industrial Chemistry”, VCH Weinheim 1993, pp. 575Google Scholar
  13. Friedlander, S. K., “Smoke, Dust and Haze — Fundamentals of Aerosol Behavior”, Wiley, New York 1977 Google Scholar
  14. Greskovich, C. and Rosolowski, J. H., J. Am. Ceram. Soc. 59 (1976), 337Google Scholar
  15. Gurav, A., Kodas, T., Plyum, T., and Xiong, Y., Aerosol Sci. Techn. 19 (1993), 411Google Scholar
  16. Haigis, B. and A. Pickering, A., Laser and Optronics 3/1994 Google Scholar
  17. Harris, G. L. (ed.), “Properties of Silicon Carbide”, Inspec, London 1995 Google Scholar
  18. Hinds, W. C., Aerosol Technology, Wiley New York 1982 Google Scholar
  19. Heine, H., Völz, H.G., Woditsch, P., Westerhaus, A., Grieber, W.-D., Liedkerke, M. de, Buxbaum, G., Printzen, H., Mausmann, M., Räde, D., Trenczek, G., Wilhelm, V., Berger, G., Endriß, H., Wienand, H., Adrian, G., Cork, W. B., Ferch, H., Leitner, L., Kathrein, H., Schwab, E., Jakkusch, H., Ohlinger, M., Veitch, R., Etzrodt, G., Frabz, K.-D., Härtner, H., Besod, R., Gaedcke, H., chapter “Pigments, Inorganic”, in volume A20 of “Ullmann’s Encyclopedia of Industrial Chemistry”, VCH Weinheim 1992, pp. 243Google Scholar
  20. Hitchman, M. L. and Jensen, K. F., 1993, chapter 1 “Chemical Vapor Deposition — An Overview” in “Chemical Vapor Deposition”, Hitchman, M. L. and Jensen, K. F. (eds.), Academic Press London 1993, 1 Google Scholar
  21. Klabunde, K. J., Stark, J. V., Koper, O., Mohs, C., Khaleel, A., Glavee, G., Zhang, D., Sorensen, C. M., and Hadjipanayis, G. C., in “Nanophase Materials”, Hadjipanayis, G. C., and Siegel, R. W. (eds.), Kluwer Amsterdam 1994, 1 Google Scholar
  22. Klein, S., dissertation, “Chemische Gasphasensynthese und Charakterisierung von nanokristallinem Siliziumkarbid-Pulver”, VDI Düsseldorf 1999 Google Scholar
  23. Kodas, T. T., Adv. Mat. 1 (1989), 330CrossRefGoogle Scholar
  24. Kodas, T. T. and Hampden-Smith, M. J., chapter 9 “Overview of Metal CVD”, in “The Chemistry of Metal CVD”, Kodas, T. T. and Hampden-Smith, M. J.VCH Weinheim, 1994, 429Google Scholar
  25. Kodas, T. T. and Hampden-Smith, M. J., “Aerosol Processing of Materials”, Wiley-VCH, New York 1999 Google Scholar
  26. Kriechbaum, G. W. and Kleinschmit, P., Adv. Mat. 1 (1989), 330CrossRefGoogle Scholar
  27. Krstic, V. D., MRS Bulletin 2/1995,46 Google Scholar
  28. Kruis, F. E., Fissan, H., and Peled, A., J. Aerosol Sci. 29 (1998), 511CrossRefGoogle Scholar
  29. Kruis, F. E., Kusters, K. A., Pratsinis, S. E., and Scarlett, B., Aerosol Sci. Techn. 19 (1993), 514CrossRefGoogle Scholar
  30. Liethschmidt, K., “Silicon Carbide”, in “Ullmann’s Encyclopedia of Industrial Chemistry”, Volume A23 (1993), 749Google Scholar
  31. Linackers, D., Strecker, M. G. D., Roth, P., Janzen, C., and Pratsinis, S. E., Comb. Sci. Techn. 123 (1997), 287CrossRefGoogle Scholar
  32. Mazdiyasni, K. S., Lynch, C. T., and Smith, J. S., J. Am. Ceram. Soc. 48 (1965), 372CrossRefGoogle Scholar
  33. Nariki, Y., Inoue, Y., and Tanaka, K., J. Mater. Sci. 5 (1990), 3101CrossRefGoogle Scholar
  34. Pensel, G., and Helbig, R., Festkörperprobleme, 1990, 30, 133CrossRefGoogle Scholar
  35. Pratsinis, S. E. and Kodas, T. T., “Manufacturing of Materials by Aerosol Processes”, chapter 33 in “Aerosol Measurement — Principles, Techniquies and Applications”, K. Willeke, and Baron, P. A. (eds.), van Nostrand Reinhold 1993, pp. 721Google Scholar
  36. Reist, P. C., “Aerosol Science and Technology”, McGraw-Hill New York 1993 Google Scholar
  37. Schafer, D. W. and Hurd, A. J., Aerosol Sci. Techn. 12 (1990), 876CrossRefGoogle Scholar
  38. Segal, D., “Chemical Synthesis of Advanced Ceramic Materials”, Cambridge University Press Cambridge 1989 Google Scholar
  39. Seinfeld, J. H. and Pandis, S. N., “Atmospheric Chemistry and Physics”, Wiley 1998 Google Scholar
  40. Sharafat, S. Wong, C. P. C., and Reis, E. E., Fusion Technology 19 (1991), 901Google Scholar
  41. Siegel, R. W., “Cluster Assembly of Nanophase Materials”, chapter 13 in “Materials Science and Technology”, vol. 15: “Processing of Metals and Alloys”, Cahn, R. W. (ed.), VCH Wein-heim 1991,583 Google Scholar
  42. Skandan, G., Chen, Y.-J., Glumac, N., and Kear, B. H., Nanostruct. Mat. 11 (1999), 149CrossRefGoogle Scholar
  43. Somiya, S., and Inomata, Y. (eds.), “Silicon Carbide Ceramics 1”, Elsevier 1991 Google Scholar
  44. Starck, H. C./Bayer AG, Laufenburg, GermanyGoogle Scholar
  45. Ulrich, G. D., and Riehl, J. W., J. Coll. Int. Sci. 87 (1982), 257CrossRefGoogle Scholar
  46. Ulrich, G. D., Chem. Eng. News August 1984, 22Google Scholar
  47. Ulrich, G. D., Comb. Sci. Techn. 4 (1971), 47CrossRefGoogle Scholar
  48. Vallen, R., Kaiser, A., Förster, J., Buchkremer, H. P., and Stöver, D., J. Mater.Sci. 31 (1996), 3623CrossRefGoogle Scholar
  49. Vohler, O. Sturm, F. v., Wege, E., Kienle, H. v., Voll, M., Kleinschmit, P., chapter “Carbon” in volume A5 of “Ullmann’s Encyclopedia of Industrial Chemistry”, VCH Weinheim 1986, p. 140Google Scholar
  50. White, D. A., Oleff, S. M., and Fox, J. R., Adv. Ceram. Mater. 2 (1987), 53Google Scholar
  51. Benker, A., diploma thesis, Darmstadt 1999Google Scholar
  52. Besling, W. F. A., Goossens, A., Meester, B., Schoonman, J., J. Appl. Phys. 83 (1998), 544CrossRefGoogle Scholar
  53. Bradley, D. C., Mehrotra, R. C., Gaur, D. P., “Metal Alkoxides”, Acadamic Press London 1978Google Scholar
  54. Bradley, D. C., Chem. Rev. 89 (1989), 1317Google Scholar
  55. Cannon, W. R., Danforth, S. C., Flint, J. H., Haggerty, J. S., and Marra, R. A., J. Am. Ceram. Soc., 65 (1982), 324 and 330Google Scholar
  56. Cauchetier, M., Croix, O., Luce, M., Baraton, M. I., Merle, T., Quintard, P., J. Eur. Ceram. Soc. 8 (1991), 215CrossRefGoogle Scholar
  57. Chang, W., Skandan, S. C., Danforth, C., Kear, B. H., and Hahn, H., Nanostruct. Mat. 4 (1994), 507Google Scholar
  58. Deppert, K., Hansson, H.-C., Jeppesen, S., Miller, M. S., Samuelson, L., Seifert, W., and Wiedensohler, A., J. Crystal growth 145 (1994), 636 )CrossRefGoogle Scholar
  59. Elihn, K., Otten, F., Boman, M., Kruis, F.E., Fissan, H., Carlsson, J.-0., Nanostruct. Mat. 12 (1999), 79Google Scholar
  60. Fotou, G. P. and Kodas, T. T. Advanced Materials 9 (1997), 420CrossRefGoogle Scholar
  61. Gonsalves, K. E., Strutt, P. R., Xiao, T. D., and Klemens, P. G., J. Mat. Sci. 27 (1992), 3238CrossRefGoogle Scholar
  62. Hersee, S. D., and Ballingall, J. M., J. Vac. Sci. Technol. A8 (1990), 800CrossRefGoogle Scholar
  63. Hinkle, L. D., and Mariano, C. F., J. Vac. Sci. Technol. A9 (1991), 2043Google Scholar
  64. Klein, S., Winterer, M. and Hahn, H., Chem. Vap. Dep. 4 (1998), 143CrossRefGoogle Scholar
  65. Kodas, T. T., and Hampden-Smith, M., “Overview of Metal CVD”, chapter 9 in “The Chemistry of Metal CVD”, Kodas,T.T. and Hampden-Smith, M.VCH Weinheim 1994, pp. 429Google Scholar
  66. Konrad, A., Fries, T., Gahn, A., Kummer, F., Herr, U., Tidecks, R., Samwer, K., J. Appl. Phys. 86 (1999), 3129CrossRefGoogle Scholar
  67. Linackers, D., Strecker, M. G. D., Roth, P., Janzen, C., and Pratsinis, S. E., Comb. Sci. Techn. 123 (1997), 287CrossRefGoogle Scholar
  68. Littau, K. A., Szajowski, P. J., Muller, A. J., Kortan, A. R., and Bruis, L. E., J. Phys. Chem. 97 (1993), 1224Google Scholar
  69. Löffler, F., “Dust Separation”, chapter 13 in Volume B2 of “Ullmanns Encyclopedia of Indus-trial Chemistry”, VCH Weinheim 1988Google Scholar
  70. Mazdiyasni, K. S., Lynch, C. T., and Smith, J. S., J. Am. Ceram. Soc. 48 (1965), 372CrossRefGoogle Scholar
  71. McMillin, B K, Biswas, P., and Zachariah, M. R., J. Mater. Res. 11 (1996), 1552Google Scholar
  72. Powell, Q. H., Kodas, T. T., and Bruce M. Anderson, Chem. Vap. Deposition 2 (1996), 179CrossRefGoogle Scholar
  73. Rao, N., Girshick, S., Heberlein, J., McMurry, P., Jones, S., Hansen, D., Michel, B., Plasma Chem. Plasma Proc. 15 (1995), 581CrossRefGoogle Scholar
  74. Rees, W. S., “Introduction”, chapter 1 in “CVD of Nonmetals” W. S. Rees (ed.), VCH Weinheim 1996, pp. 1Google Scholar
  75. Reist, P.C., Aerosol Science and Technology, McGraw-Hill New York 1993 Google Scholar
  76. Rulison, A. J., Miguel, P. F., Katz, J. L., J. Mater. Res. 11 (1996), 3083CrossRefGoogle Scholar
  77. Sacilotti, M., Horiuchi, L., Decobert, J., Brasil, M. J., Cardoso, L. P., Osstart, P., and Ganiere, J. D., J. Appl. Phys. 71 (1992), 179Google Scholar
  78. Schultz, D. L., and Marks, T. J., “Superconducting Materials”, chapter 2 in “CVD of Nonmetals” Rees, W. S., (ed.), VCH Weinheim 1996, pp. 37Google Scholar
  79. Seifried, S. thesis 2000Google Scholar
  80. Seifried, S., Winterer, M. and Hahn, H., Chem. Vap. Dep. 6 (2000), 630CrossRefGoogle Scholar
  81. Skandan, G., Chen, Y.-J., Glumac, N., and Kear, B. H., Nanostruct. Mat. 11 (1999), 149CrossRefGoogle Scholar
  82. Srdic, V. V., Winterer, M., and Hahn, H., J. Am. Ceram. Soc. 83 (2000), 729CrossRefGoogle Scholar
  83. Srdic, V. V., Winterer, M., and Hahn, H., J. Am. Ceram. Soc. 83 (2000), 1853Google Scholar
  84. Srdic, V. V., Winterer, M., A. MöIler, G. Miehe and Hahn, H., J. Am. Ceram. Soc. 84 (2001), 2771Google Scholar
  85. Srdic, V. V., Winterer, M., Miehe, G., and Hahn, H., Nanostruct. Mat. 12 (1999), 95CrossRefGoogle Scholar
  86. Sullivan, J. J., “Materials Delivery Challenges for MLM” MKS Technical Report 1994 Google Scholar
  87. Sullivan, J. J., Schaffer, S., and Jacobs, R. P., J. Vac. Sci. Technol. A7 (1989), 2387Google Scholar
  88. Sullivan. J. J. and Jacobs, R. P., Solid State Technol. 29 (1986), 113Google Scholar
  89. Tompa, G.S., “Semiconduction Materials” chapter 4 in “CVD of Nonmetals” Rees, W. S., (ed.), VCH Weinheim 1996, pp. 193Google Scholar
  90. Ulrich, G. D., Comb. Sci. Techn. 4 (1971), 47Google Scholar
  91. Vollath, D. and Szabo, D.V., and Haußelt, J., J. Eur. Ceram. Soc. 17 (1997), 1317Google Scholar
  92. Vollath, D. and Szabo, D.V., Nanostruct. Mat. 4 (1994), 927CrossRefGoogle Scholar
  93. Vollath, D., Sickafus, K. E., Nanostruct. Mat. 1 (1992), 427CrossRefGoogle Scholar
  94. Vollath, D., Sickafus, K. E., Nanostruct. Mat. 2 (1993), 451CrossRefGoogle Scholar
  95. Wahl, G., chapter 10 “Abscheidung aus der Gasphase”, in volume 2 of “Vakuumbeschichtung”, Kienel, G., and Rö11, K. (eds.) VDI Verlag Dusseldorf 1993, pp. 376Google Scholar
  96. Walzel, P., “Spraying and Atomizing of Liquids”, chapter 6 in volume B2 of “Ullmann’s Ency-clopedia of Industrial Chemistry”, VCH Weinheim 1988 Google Scholar
  97. Wu, H.-D. and Readey, D. W., “Ceramic Transactions 2: Silicon Carbide” (1987), 35, in “Silicon Carbide’87, Cawley”, J. D. (ed.), Am. Ceram. Soc. Westerville 1989 Google Scholar
  98. Wutz, M., Adam, H., and Walcher, W., “Vacuum Science and Technology”, Vieweg Braunschweig 1989 Google Scholar
  99. Agival, Y. and Schieber, M., J. Cryst. Growth 9 (1971), 127CrossRefGoogle Scholar
  100. Anantharaman, T. R., and Christian, J. W., Acta Cryst. 9 (1956), 479CrossRefGoogle Scholar
  101. Barret, E. P., Joyner, L. G., and Halenda, P. P., J. Am. Chem. Soc. 73 (1951), 373CrossRefGoogle Scholar
  102. Brinker, C. J., and Scherer, G. W., “Sol-Gel Science”, Academic Press San Diego 1990 Google Scholar
  103. Brunauer, S., “The Adsorption of Gases and Vapors Vol. 1”, Princeton University Press, Prince-ton 1945 Google Scholar
  104. Brunauer, S., Emmett., P. H., and Teller, E., J. Am. Chem. Soc. 60 (1938), 309CrossRefGoogle Scholar
  105. Buschmann, V., Klein, S., FueB, H., and Hahn, H., J. Cryst. Growth 193 (1998), 335CrossRefGoogle Scholar
  106. Chatterjee, A., Kalia, R., Nakano, A., Omeltchenko, A., Tsuruta, K., Vashishta, P., Loong, C.-K., Winterer, M., Klein, S., Appl. Phys. Lett. 77 (2000), 1132Google Scholar
  107. Clegg, W. J., J. Am. Ceram. Soc. 83 (2000), 1039Google Scholar
  108. Clifford, R. P., Gownlock, B. G., Johnson, C. A. F., and Stevenson, J., J. Organometal. Chem. 43 (1972), 53CrossRefGoogle Scholar
  109. Dobbins, R.A., and Megaridis, C. M., Langmuir 3 (1987), 254Google Scholar
  110. Ehrburger-Dolle, F., “Fractal Characteristics of Silica Surfaces and Aggregates”, chapter 2B in “The Surface Properties of Silicas”, Legrand, A. P. (ed.) Wiley New York 1998 Google Scholar
  111. Friedlander, S. K. and Wang, C. S. J. Coll. Int. Sci. 22 (1966), 126Google Scholar
  112. Fritz, G., and Marquardt, G., Z. Anorg. Allg. Chem. 1 (1974), 404Google Scholar
  113. Gedde, U. W., “Polymer Physics”, Chapman and Hall 1995Google Scholar
  114. Greg, S. J. and Sing, K. S. W., “Adsorption, Surface Area and Porosity”, Academic Press San Diego 1982 Google Scholar
  115. Hinds, W. C., “Physical and Chemical Changes in the Particulate Phase”, chapter 4: in Willeke K. and P.A. Baron (eds.), “Aerosol Measurement — Principles, Techniquies and Applications”, Van Nostrand Reinhold, New York 1993 Google Scholar
  116. Hurd, A. J., Schaefer, D. W., and Martin, J. E., Phys. Rev. A35 (1987), 2361Google Scholar
  117. John, W., “The Characteristics of Environmental and Laboratory-Generated Aerosols”, chapter 5 in “Aerosol Measurement — Principles, Techniquies and Applications”, K. Willeke, and Baron, P. A. (eds.), van Nostrand Reinhold 1993, pp. 54Google Scholar
  118. Keijser, Th. H. de, Mittenmeijer, E. J., and Rozendaal, H. C. F., J. Appl. Cryst. 16 (1983), 309CrossRefGoogle Scholar
  119. Klein, S., Winterer, M., and Hahn, H., Chem. Vap. Dep. 4 (1998), 143CrossRefGoogle Scholar
  120. Klein, S., Winterer, M., and Hahn, H., Mat. Res. Soc. Symp. Proc. 501 (1998), 27CrossRefGoogle Scholar
  121. Klein, S., dissertation, “Chemische Gasphasensynthese und Characterisierung von nanokristallinem Siliziumkarbid-Pulver”, VDI Düsseldorf 1999 Google Scholar
  122. Klotz, H.-D., Drost, H., Spangenberg, H.-J., Z. Phys. Chemie Leipzig 266 (1985), 101Google Scholar
  123. Krill, C. E. and Birringer, R. Phil. Mag. A77 (1998), 621Google Scholar
  124. Lai, F. S., Friedlander, S. K., Pich, J., and Hidy, G. M., J. Coll. Int. Sci. 39 (1971), 395CrossRefGoogle Scholar
  125. Landgrebe, J. D. and Pratsinis, S. E., Ind. Chem. Res. 28 (1989), 1474Google Scholar
  126. Lindackers, D, D., “Erzeugung und Charakterisierung von oxidischen Nanopartikeln”, dissertation U. Duisburg, published in Shaker Verlag 1999 Google Scholar
  127. Martin, J. E., J. Appl. Cryst. 19 (1986), 25CrossRefGoogle Scholar
  128. Lee, K. W., Chen, H., and Gieseke, J. A., Aerosol Sci. and Technol. 3 (1984), 53CrossRefGoogle Scholar
  129. Okabe, Y., Hojo, J., and Kato, A., J. Less-Comm. Metals 68 (1979), 29CrossRefGoogle Scholar
  130. Pfeifer, P. and Avnir, D. J. Chem. Phys. 79 (1983), 3558Google Scholar
  131. Reist, P. C., “Aerosol Science and Technology”, McGraw-Hill 1993 Google Scholar
  132. Schafer, D. W. and Hurd, A. J., Aerosol Sci. Techn. 12 (1990), 876CrossRefGoogle Scholar
  133. Schafer, D. W., Martin, J. E., Wiltzius, P., and Cannell, D. S., Phys. Rev. Lett. 52 (1984), 2371Google Scholar
  134. Seinfeld, J. H. and Pandis, S. N., “Atmospheric Chemistry and Physics”, Wiley 1998 Google Scholar
  135. Tsantilis, S. and Pratsinis, S. E., AIChE Journal, in press 2000 Google Scholar
  136. Wong, P.-Z. and Cao, Q.-Z., Phys. Rev. B45 (1992), 7627CrossRefGoogle Scholar
  137. Wu, H., Ready, D. W., Silicon Carbide Symposium, Ceramic Transactions 1987, Cawley, J. D. (ed.), J. D.Westerville, Ohio, American Ceramic Society 1989, 235Google Scholar
  138. Xiao, T. D., Gonsalves, K. E., Strutt, P. R., Klemens, P. G., J. Mater. Sci. 28 (1883), 1334Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Markus Winterer
    • 1
  1. 1.Institute of Materials ScienceTU DarmstadtDarmstadtGermany

Personalised recommendations