Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 57))

Abstract

The previous chapters have been addressing a large variety of materials and devices that are nowadays commonly used in different radiation applications. However, the radiation community also watches the trend in the microelectronics world very carefully. Therefore, new materials and device structures are already in an early phase also studied from a viewpoint of their performance in a radiation envi ronment. This chapter aims at briefly addressing some of these materials and de-vices. Within the scope of the book and due to space restrictions the attention is given to potentially very promising directions with applications in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Groeseneken G, Maes HE, Van Houdt J, Witters S (1997) Basic of non-volatile semiconductor memory devices. In: Brown WB, Brewer JE (eds) Non-volatile semiconductor memory technology, a comprehensive guide to understanding and using NVM devices, The IEEE Press, pp 1–88

    Google Scholar 

  2. Baldi L, Maurelli A (1999) Embedded non volatile memories in deep-submicron CMOS. In: Maes HE, Mertens RP, Declerck G, Grünbacher H (eds), Proc ESSDERC 99, Editions Frontières, Neuilly France, pp 127–134

    Google Scholar 

  3. Ishiwara H (2001) Current status and prospects of FET-type ferroelectric memories. J Semicond Techn Sci 1: 1–14

    Google Scholar 

  4. Nguygen DN, Guertin SM, Swift GM, Johnston AH (1999) Radiation effects in flash memories. IEEE Trans Nucl Sci 46: 1744–1756

    Article  ADS  Google Scholar 

  5. De Santi G, Clementi C, Rebora A (1999) Process integration evolution in manufacturing techniques for flash memories. In: Claeys C, Iwai H, Bronner G, Fair R (eds) Proc ULSI Process Integration, The Electrochem Soc, Pennington PV 99–18: 93–106

    Google Scholar 

  6. Kynett VN, Baker A, Fandrich ML, Hoekstra GP, Jungroth O, Kreifels JA, Wells S, Winston MD (1988) An in-system reprogrammable 32kx8 CMOS flash memory. IEEE J Solid State Circ 23: 1157–1162

    Article  Google Scholar 

  7. Schwartz HR, Nichols DK, Johnston AH (1997) Single-event upset in flash memories. IEEE Nucl Sci 44: 2315–2324

    Article  ADS  Google Scholar 

  8. Claeys C, Ohyama H, Simoen E, Nakabayashi N, Kobayashi K (2002) Radiation damage in flash memory cells. Nucl Instr Method B (in press)

    Google Scholar 

  9. Yang B, Lee SS, Kang YM, Noh KH, Hong SK, Oh SH, Kang EY, Lee SW, Kim JG, Shu CW, Seong JY, Lee CG, Kang NS, Park YJ (2001) Integrated process and reliabolity for SrBi2Ta209 based ferroelectric memories. J Semicond Techn Sci 1: 141–157

    Google Scholar 

  10. Benedetto JM, Moore RA, McLean FB, Brody PS, Dey SK (1990) The effect of ionising radiation on sol-gel ferroelectric PZT capacitors IEEE Trans Nucl Sci 37: 1713–1717

    Google Scholar 

  11. Schwank JR, Nasby RF, Miller SL, Rodgers MS, Dressendorfer PV (1990) IEEE Trans Nucl Sci 37: 1703–1712

    Article  ADS  Google Scholar 

  12. Moore RA, Benedetto JM, Rod BJ (1993) Total dose effects on ferroelectric PZT capacitors used as non-volatile storage element. IEEE Trans Nucl Sci 40: 1591–1596

    Article  ADS  Google Scholar 

  13. Moore RA, Benedetto JM (1995) Ionizing radiation-induced asymmetries of the retention characteristics of ferroelectric thin films. IEEE Trans Nucl Sci 42: 1575–1584

    Article  ADS  Google Scholar 

  14. Cheng Z, Zhang L, Yao X (1992) Effect of space charge on micro-macro domain transition of PZT. IEEE Trans Electr Insul 27: 773–776

    Article  Google Scholar 

  15. Gao J, Zheng L, Huang B, Song Z, Yang L, Fan Y, Zhu S, Line C (1999) Total dose radiation effects on Pt/PZT/Pt ferroelectric capacitors fabricated by LP method. Semi-con Sci Technol 14: 836–839

    Article  ADS  Google Scholar 

  16. Bernacki S, Hunt K, Tyson S, Hudgens S, Pashmakov B, Czubatyj W (2000) Total dose radiation response of high temperature imprint characteristics of chalcogenide based RAM resistor elements. IEEE Trans Nucl Sci 47: 2528–2533

    Article  ADS  Google Scholar 

  17. International Technology Roadmap for Semiconductors, 2001 Edition. www.itrs.net/2001_SIA_Roadmap/Home.htm

    Google Scholar 

  18. Degraeve R, Kaczer B, Houssa M, Groeseneken G, Heyns M, Jeons JS, Halliyal A (1999) Analysis of high voltage TDDB measurements on Ta2O5/SiO2 stack. In: IEDM Tech Digest. The IEEE, New York, pp 327–330

    Google Scholar 

  19. Lee BH, Kang L, Qi WJ, Nieh R, Jeon Y, Onishi K, Lee JC (1999) Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric applications. In: IEDM Tech Digest. The IEEE, New York, pp 133–136

    Google Scholar 

  20. Guo X, Wang X, Luo Z, Ma TP, Tamagawa T (1999) High quality ultra-thin (1.5 nm) TiO2/Si3N4 gate dielectric for deep sub-micron CMOS technology. In: IEDM Tech Digest. The IEEE, New York, pp 137–140

    Google Scholar 

  21. Choi BK, Fleetwood DM, Massengill LW, Schrimpf RD, Galloway KF, Shaneyfelt MR, Meisenheimer TL, Dodd PE, Schwank JR, Lee YM, Johnson RS, Lucovsky G (2002) Reliability degradation of ultra-thin oxynitride and Al2O3 gate dielectric films owing to heavy-ion irradiation. Electron Lett 38: 157–158

    Article  Google Scholar 

  22. Alam MA, Bude J, Weir B, Silverman P, Ghetti A, Monroe D, Cheung KP, Moccio S (1999) An anode hole injection percolation model for oxide breakdown-The doom’s day scenario revisited. In: IEDM Tech Digest. The IEEE, New York, pp 715–718

    Google Scholar 

  23. Massengill LW, Choi BK, Fleetwood DM, Schrimpf, RD, Galloway KF, Shaneyfelt MR, Meisenheimer TL, Dodd PE, Schwank JR, Lee YM, Johnson RS, Lucovsky G (2001) Heavy-ion-induced breakdown in ultra-thin gate oxides and high-k dielectrics. IEEE Trans Nucl Sci 48: 1904–1912

    Article  ADS  Google Scholar 

  24. Sexton FW, Fleetwood DM, Shaneyfelt MR, Dodd PE, Hash GL (1997) Single event gate rupture in thin oxides. IEEE Trans Nucl Sci 44: 2345–2352

    Article  ADS  Google Scholar 

  25. McGarrity JM, McLean FB, DeLancey WM, Palmour J, Carter C, Edmond J, Oakley RE (1992) Silicon carbide JFET radiation response. IEEE Trans Nucl Sci 39: 1974–1981

    Article  ADS  Google Scholar 

  26. Babcock R (1965) Radiation damage in SiC. IEEE Trans Nucl Sci 12: 43–47

    Article  ADS  Google Scholar 

  27. MorkoÇ H, Strite S, Gao GB, Lin ME, Sverdlov B, Burns M (1994) Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J Appl Phys 76: 1363–1398

    Google Scholar 

  28. Hobgood H, Glass RC, Augustine G, Hopkins RH, Jenny J, Skowronski M, Mitchel WC, Roth M (1995) Semi-insulating 6H-SiC grown by physical vapor transport. Appl Phys Lett 66: 1364–1366

    Article  ADS  Google Scholar 

  29. Ikeda M, Matsunami H, Tanaka T (1980) Site effect on the impurity levels in 4H, 6H, and 15R SiC. Phys Rev B 22: 2842–2854

    Article  ADS  Google Scholar 

  30. Pensl G, Choyke WJ (1993) Electrical and optical characterization of SiC. Physica B 185: 264–283

    Article  ADS  Google Scholar 

  31. Troffer T, Schadt M, Frank T, Itoh H, Pensl G, Heindl J, Strunk HP, Maier M (1997) Doping of SiC by implantation of boron and aluminum. Phys Stat Sol (a) 162: 277–298

    Article  ADS  Google Scholar 

  32. Barry AL, Lehmann B, Fritsch D, Bräunig D (1991) Energy dependence of electron damage and displacement threshold energy in 6H silicon carbide. IEEE Trans Nucl Sci 38: 1111–1115

    Article  ADS  Google Scholar 

  33. Rempel AA, Schaefer H-E (1995) Irradiation-induced atomic defects in SiC studied by positron annihilation. Appl Phys A 61: 51–53

    Article  ADS  Google Scholar 

  34. Janzén E, Henry A, Bergman JP, Ellison A, Magnusson B (2001) Material characterization need for SiC-based devices. Materials Sci in Semicond Process 4: 181–186

    Article  Google Scholar 

  35. Itoh H, Kawasuso A, Ohshima T, Yoshikawa M, Nashiyama I, Tanigawa S, Misawa S, Okumura H, Yoshida S (1997) Intrinsic defects in cubic silicon carbide. Phys Stat Sol (a) 162: 173–198

    Article  ADS  Google Scholar 

  36. Choyke WJ, Patrick L (1971) Photoluminescence of radiation defects in cubic SiC: Localized modes and Jahn-Teller effect. Phys Rev B 4: 1843–1847

    Google Scholar 

  37. Patrick L, Choyke WJ (1972) Photoluminescence of radiation defects in ion-implanted 6H SiC. Phys Rev B 5: 3253–3259

    Article  ADS  Google Scholar 

  38. Freitas Jr JA, Bishop SG, Edmond JA, Ryu J, Davis RF (1987) Photoluminescence spectroscopy of ion-implanted 3C-SiC grown by chemical vapor deposition. J Appl Phys 61: 2011–2016

    Article  ADS  Google Scholar 

  39. de S Balona LA, Loubser JHN (1970) Esr in irradiated silicon carbide. J Phys C: Solid St Phys 3: 2344–2351

    Google Scholar 

  40. Itoh H, Yoshikawa M, Nashiyama I, Misawa S, Okumura H, Yoshida S (1990) Radiation induced defects in CVD-grown 3C-SiC. IEEE Trans Nucl Sci 37: 1732–1738

    Article  ADS  Google Scholar 

  41. Itoh H, Yoshikawa M, Nashiyama I, Misawa S, Okumura H, Yoshida S (1992) Electron Spin Resonance study of defects in CVD-grown 3C-SiC irradiated with 2 MeV protons. J Electron Materials 21: 707–710

    Article  ADS  Google Scholar 

  42. Il’in VA, Ballandovich VA (1993) EPR and DLTS of point defects in silicon carbide crystals. Diff and Defect Data 103–105: 633–644

    Google Scholar 

  43. Dannefaer S, Craigen D, Kerr D (1995) Carbon and silicon vacancies in electron-irradiated 6H-SiC. Phys Rev B 51: 1928–1930

    Article  ADS  Google Scholar 

  44. Brauer G, Anwand W, Coleman PG, Knights AP, Plazaola F, Pacaud Y, Skorupa W, Störmer J, Willutzki P (1996) Positron studies of defects in ion-implanted SiC. Phys Rev B 54: 3084–3092

    Article  ADS  Google Scholar 

  45. Itoh H, Yoshikawa M, Nashiyama I, Okumura H, Misawa S, Yoshida S (1995) Photoluminescence of radiation induced defects in 3C-SiC epitaxially grown on Si. J Appl Phys 77: 837–842

    Article  ADS  Google Scholar 

  46. Talwar DN, Feng ZC (1991) Tight-binding description for the bound electronic states of isolated single and paired native defects in 13-SiC. Phys Rev B 44: 3191–3198

    Article  ADS  Google Scholar 

  47. Nagesh V, Farmer JW, Davis RF, Kong HS (1990) Defects in cubic SiC on Si. Rad Eff and Defects in Solids 112: 77–84

    Article  Google Scholar 

  48. Nagesh V, Farmer JW, Davis RF, Kong HS (1987) Defects in neutron irradiated SiC. Appl Phys Lett 50: 1138–1140

    Article  ADS  Google Scholar 

  49. Hemmingsson C, Son NT, Kordina O, Janzén E, Lindström JL (1998) Capture cross sections of electron irradiation induced defects in 6H-SiC. J Appl Phys 84: 704–708

    Article  ADS  Google Scholar 

  50. Gong M, Fung S, Beling CD, You Z (1999) A deep level transient spectroscopy study of electron irradiation induced deep levels in p-type 6H-SiC. J Appl Phys 85: 71207122

    Google Scholar 

  51. Gong M, Fung S, Beling CD, You Z (1999) Electron-irradiation-induced deep levels in n-type 6H-SiC. J Appl Phys 85: 7604–7608

    Article  ADS  Google Scholar 

  52. Doyle JP, Aboelfotoh MO, Linnarsson MK, Svensson BG, Schöner A, Nordell N, Harris C, Lindström JL, Janzén E, Hemmingsson C (1996) Mat Res Soc Proc Vol 423: 519–524

    Article  Google Scholar 

  53. Hemmingsson C, Son NT, Kordina O, Bergman JP, Janzén E, Lindström JL, Savage S, Nordell N (1997) Deep level defects in electron-irradiated 4H SiC epitaxial layers. J Appl Phys 81: 6155–6159

    Article  ADS  Google Scholar 

  54. Doyle JP, Linnarsson MK, Pellegrino P, Keskitalo N, Svensson BG, Schöner A, Nordell N, Lindström JL (1998) Electrically active point defects in n-type 4H-SiC. J Appl Phys 84: 1354–1357

    Article  ADS  Google Scholar 

  55. Dalibor T, Pensl G, Matsunami H, Kimoto T, Choyke WJ, Schöner A, Nordell N (1997) Deep defect centers in silicon carbide monitored with deep level transient spectroscopy. Phys Stat Sol (a) 162: 199–225

    Article  ADS  Google Scholar 

  56. Lebedev AA, Veinger AI, Davydov DV, Kozlovski VV, Savkina NS, Strel’chuk AM (2000) Doping of n-type 6H-SiC and 4H-SiC with defects created with a proton beam. J Appl Phys 88: 6265–6271

    Article  ADS  Google Scholar 

  57. Kawasuso A, Itoh H, Okada S, Okumura H (1996) Annealing processes of vacancy-type defects in electron-irradiated and as-grown 6H-SiC studied by positron lifetime spectroscopy. J Appl Phys 80: 5639–5645

    Article  ADS  Google Scholar 

  58. Storasta L, Carlsson FHC, Sridhara SG, Bergman JP, Henry A, Egilsson T, Hallén A, Janzén E (2001) Pseudodonor nature of the DI defect in 4H-SiC. Appl Phys Lett 78: 46–48

    Article  ADS  Google Scholar 

  59. Kawasuso A, Redmann F, Krause-Rehberg R, Frank T, Weidner M, Pensl G, Sperr P, Itoh H (2001) Vacancies and deep levels in electron-irradiated 6H SiC epilayers studied by positron annihilation and deep level transient spectroscopy. J Appl Phys 90: 3377 3382

    ADS  Google Scholar 

  60. Kawasuso A, Redmann F, Krause-Rehberg R, Weidner M, Frank T, Pensl G, Sperr P, Triftshauser W, Itoh H (2001) Annealing behavior of vacancies and Z112 levels in electron-irradiated 4H-SiC studied by positron annihilation and deep-level transient spectroscopy. Appl Phys Lett 79: 3950–3952

    Article  ADS  Google Scholar 

  61. Kawasuso A, Itoh H, Ohshima T, Abe K, Okada S (1997) Vacancy production by 3 MeV electron irradiation in 6H-SiC studied by positron lifetime spectroscopy. J Appl Phys 82: 3232–3238

    Article  ADS  Google Scholar 

  62. Ballandovich VS (1999) Deep-level transient spectroscopy of radiation-induced levels in 6H-SiC. Semiconductors 33: 1188–1192

    Article  ADS  Google Scholar 

  63. Gong M, Reddy CV, Beling CD, Fung S, Brauer G, Wirth H, Skorupa W (1998) Deep level traps in the extended tail region of boron-implanted n-type 6H-SiC. Appl Phys Lett 72: 2739–2741

    Article  ADS  Google Scholar 

  64. Fung S, Gong M, Beling CD, Brauer G, Wirth H, Skorupa W (1998) Aluminumimplantation-induced deep levels in n-type 6H-SiC. J Appl Phys 84: 1152–1154

    Article  ADS  Google Scholar 

  65. Raynaud C, Ghaffour K, Ortolland S, Locatelli M-L, Souifi K, Guillot G, Chante J-P (1998) Electrical characterization of silicon carbide nthppthdiodes with an N-implanted n+ emitter. J Appl Phys 84: 3073–3077

    Article  ADS  Google Scholar 

  66. Nadella RK, Capano MA (1997) High-resistance layers in n-type 4H-silicon carbide by hydrogen ion implantation. Appl Phys Lett 70: 886–888

    Article  ADS  Google Scholar 

  67. Kimoto T, Nakajima T, Matsunami H, Nakata T, Inoue M (1996) Formation of semi-insulating 6H-SiC layers by vanadium ion implantations. Appl Phys Lett 69: 1113–1115

    Article  ADS  Google Scholar 

  68. McLean FB, McGarrity JM, Scozzie CJ, Tipton CW, DeLancey WM (1994) Analysis of neutron damage in high-temperature silicon carbide JFETs. IEEE Trans Nucl Sci 41: 1884–1894

    Article  ADS  Google Scholar 

  69. Seshadri S, Dulloo AR, Ruddy FH, Seidel JG, Rowland LB (1999) Demonstration of an SiC neutron detector for high-radiation environments. IEEE Trans Nucl Sci 46: 567–571

    Google Scholar 

  70. Rybicki GC (1995) Deep level defects in alpha particle irradiated 6H silicon carbide. J Appl Phys 78: 2996–3000

    Article  ADS  Google Scholar 

  71. Ouisse T, Bécourt N, Jaussaud C, Templier F (1994) Low-frequency, high-temperature conductance and capacitance measurements on metal-oxide-silicon carbide capacitors. J Appl Phys 75: 604–607

    Article  ADS  Google Scholar 

  72. Brown DM, Ghezzo M, Kretchmer J, Downey E, Pimbley J, Palmour J (1994) SiC MOS interface characteristics. IEEE Trans Electron Devices 41: 618–620

    Article  ADS  Google Scholar 

  73. Di Ventra M (2001) Can we make the SiC-SiO2 interface as good as the Si-SiO2 interface? Appl Phys Lett 79: 2402–2404

    Article  ADS  Google Scholar 

  74. Yoshikawa M, Itoh H, Morita Y, Nashiyama I, Misawa S, Okumura H, Yoshida S (1991) Effects of gamma-ray irradiation on cubic silicon carbide metal-oxidesemiconductor structure. J Appl Phys 70: 1309–1312

    Article  ADS  Google Scholar 

  75. Bano E, Ouisse T, Di Cioccio L, Karmann S (1994) Surface potential fluctuations in metal-oxide-semiconductor capacitors fabricated on different silicon carbide polytypes. Appl Phys Lett 65: 2723–2724

    Article  ADS  Google Scholar 

  76. Ohshima T, Yoshikawa M, Itoh H, Aoki Y, Nashiyama I (1998) Generation of interface traps and oxide-trapped charge in 6H-SiC metal-oxide-semiconductor transistors by gamma-ray irradiation. Jpn J Appl Phys 37: L1002 - L1004

    Article  ADS  Google Scholar 

  77. Ohshima T, Itoh H, Yoshikawa M (2001) Effect of gamma-ray irradiation on the characteristics of 6H silicon carbide metal-oxide-semiconductor field effect transistor with hydrogen-annealed gate oxide. J Appl Phys 90: 3038–3041

    Article  ADS  Google Scholar 

  78. Yoshikawa M, Saitoh K, Ohshima T, Itoh H, Nashiyama I, Yoshida S, Okumura H, Takahashi Y, Ohnishi K (1996) Depth profile of trapped charges in oxide layer of 6HSiC metal-oxide-semiconductor structures. J Appl Phys 80: 282–287

    Article  ADS  Google Scholar 

  79. Yoshikawa M, Saitoh K, Ohshima T, Itoh H, Nashiyama I, Takahashi Y, Ohnishi K, Okumura H, Yoshida S (1998) Generation mechanisms of trapped charges in oxide layers of 6H-SiC MOS structures irradiated with gamma-rays. Mat Sci Forum 264–268: 1017–1020

    Article  Google Scholar 

  80. Brisset C, Noblanc O, Picard C, Joffre F, Brylinski C (2000) 4H-SiC MESFETs behavior after high dose irradiation. IEEE Trans Nucl Sci 47: 598–603

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Claeys, C., Simoen, E. (2002). Advanced Semiconductor Materials and Devices—Outlook. In: Radiation Effects in Advanced Semiconductor Materials and Devices. Springer Series in Materials Science, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04974-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04974-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07778-4

  • Online ISBN: 978-3-662-04974-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics