Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 57))

Abstract

Photonics systems are ideally suited for space applications for a number of reasons: there is the high bandwidth and speed of operation, the immunity for electromagnetic interference and high reliability, low power consumption and cost and above all, light weight. Given the direct band gap, yielding a high quantum efficiency and the superior radiation tolerance of GaAs and related compounds, III–V opto-electronic components are the technology of choice for applications in a broad wavelength range, going from 700 to 1600 nm, whereby operation at 1300 nm is particularly suitable for fiber optics, since it corresponds to maximum radiation hardness of the mono-mode fibers. In this chapter, the behavior of advanced III–V opto-electronic components is described and problem areas defined. First, a description of the most promising device structures and their operation parameters is presented and this for Light Emitting Diodes (LED) and Laser Diodes (LD), on the one hand, and Photodiodes or Photodetectors (PD), on the other. A brief introduction to optocouplers is also given. Next, the fundamental and material issues related to radiation degradation are pointed out, followed by a discussion of recent irradiation studies of LEDs, LDs, PDs and optocouplers. A summary and the identification of issues requiring further studies conclude the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnes CE (1970) Effects of CO60 gamma irradiation on epitaxial GaAs laser diodes. Phys Rev B 1: 4735–4747

    Article  ADS  Google Scholar 

  2. Barnes CE (1979) A comparison of gamma-irradiation-induced degradation in amphoterically Si-doped GaAs LED’s and Zn-diffused GaAs LED’s. IEEE Trans Electron Devices 26: 739–745

    Article  ADS  Google Scholar 

  3. Rose BH, Barnes CE (1982) Proton damage effects on light emitting diodes. J Appl Phys 53: 1772–1780

    Article  ADS  Google Scholar 

  4. Dimiduk KC, Ness CQ, Foley JK (1985) Electron irradiation of GaAsP LEDs. IEEE Trans Nucl Sci 32: 4010–4015

    Article  ADS  Google Scholar 

  5. Evans BD, Hager HE, Hughlock BW (1993) 5.5-MeV proton irradiation of a strained quamtum-well laser diode and a multiple quantum-well broad-band LED IEEE Trans Nucl Sci 40: 1645–1654

    Google Scholar 

  6. Carson RF, Chow WW (1989) Neutron effects in high-power GaAs laser diodes. IEEE Trans Nucl Sci 36: 2076–2082

    Article  ADS  Google Scholar 

  7. Marshall PW, Dale CJ, Burke EA (1992) Space radiation effects on optoelectronic materials and components for a 1300 nm fiber optic data bus. IEEE Trans Nucl Sci 39: 1982–1989

    Article  ADS  Google Scholar 

  8. Zhao YF, Patwary AR, Schrimpf RD, Neifeld MA, Galloway KF (1997) 200 MeV proton damage effects on multi-quantum well laser diodes. IEEE Trans Nucl Sci 44: 1898–1905

    Google Scholar 

  9. Paxton AH, Carson RF, Schöne H, Taylor EW, Choquette KD, Hou HQ, Lear KL, Warren ME (1997) Damage from proton irradiation of vertical-cavity surface-emitting lasers. IEEE Trans Nucl Sci 44: 1893–1897

    Article  ADS  Google Scholar 

  10. Ohyama H, Vanhellemont J, Takami Y, Hayama K, Kudou T, Hakata T, Kohiki S, Sunaga H (1996) Degradation and recovery of In053Ga047As photodiodes by 1-MeV fast neutrons. IEEE Trans Nucl Sci 43: 3019–3026

    Article  ADS  Google Scholar 

  11. Khanna SM, Liu HC, Wilson PH, Li L, Buchanan M (1996) High energy proton and alpha radiation effects on GaAs/AlGaAs quantum well infrared photodetectors. IEEE Trans Nucl Sci 43: 3012–3018

    Article  ADS  Google Scholar 

  12. Reed RA, Marshall PW, Johnston AH, Barth JL, Marshall CJ, LaBel KA, D’Ordine M, Kim HS, Carts MA (1998) Emerging optocoupler issues with energetic particle-induced transients and permanent radiation damage. IEEE Trans Nucl Sci 45: 2833–2841

    Article  ADS  Google Scholar 

  13. Rax BG, Lee CI, Johnston AH, Barnes CE (1996) Total dose and proton damage in optocouplers. IEEE Trans Nucl Sci 43: 3167–3173

    Article  ADS  Google Scholar 

  14. Burkig VC, McNichols JL, Ginell WS (1969) Infrared absorption in neutron-irradiated GaAs. J Appl Phys 40: 3268–3273

    Article  ADS  Google Scholar 

  15. Mudron J, Müllerova J, Dubecky F (1998) Optical properties of semi-insulating GaAs irradiated by neutrons. Solid-State Electron 42: 243–246

    Article  ADS  Google Scholar 

  16. Carlone C, Bernier G, Tannous E, Khanna SM, Anderson WT, Gerdes JW (1990) The photoluminescent spectrum of neutron irradiated GaAs. IEEE Trans Nucl Sci 37: 1718–1725

    Article  ADS  Google Scholar 

  17. Dyment JC, North JC, D’Asaro LA (1973) Optical and electrical properties of proton-bombarded p-type GaAs. J Appl Phys 44: 207–213

    Article  ADS  Google Scholar 

  18. Khanna SM, Carlone C, Hallé S, Parenteau M, Béliveau A, Aktik C, Gerdes Jr JW (1991) The photoconductivity spectrum of electron and neutron irradiated n lightly doped GaAs. IEEE Trans Nucl Sci 38: 1145–1152

    Article  ADS  Google Scholar 

  19. Ascheron C (1991) Proton beam modifications of selected AIIIBV compounds. Phys Stat Sol (a) 124: 11–55

    Article  ADS  Google Scholar 

  20. Manasreh MO, von Bardeleben HJ, Mousalitin AM, Khokhlov DR (1999) Electron irradiation effects on the intersubband transitions in InGaAs/AIGaAs multiple quantum wells. J Appl Phys 85: 630–632

    Article  ADS  Google Scholar 

  21. Manasreh MO, Ballet P, Smathers JB, Salamo GJ, Jagadish C (1999) Proton irradiation effects on the intersubband transition in GaAs/AlGaAs multiple quantum wells with bulk or superlattice barriers. Appl Phys Lett 75: 525–527

    Article  ADS  Google Scholar 

  22. Hegeler F, Manasreh MO, Morath C, Ballet P, Yang H, Salamo GJ, Tan HH, Jagadish C (2000) Thermal annealing recovery of intersubband transitions in proton-irradiated GaAs/AlGaAs multiple quantum wells. Appl Phys Lett 77: 2867–2869

    Article  ADS  Google Scholar 

  23. Berhane Y, Manasreh MO, Weaver BD (2001) He+-ion irradiation effect on intersubband transitions in GaAs/AlGaAs multiple quantum wells. J Appl Phys 89: 3517–3519

    Article  ADS  Google Scholar 

  24. Ressel P, Strusny H, Gramlich S, Zenner U, Sebastian J, Vogel K (1993) Optimised proton implantation step for vertical-cavity surface-emitting lasers. Electron Lett 29: 918–919

    Article  Google Scholar 

  25. Kundrotas J, Dargys A, Valusis G, Asmontas S, Granja C, Pospisil S, Köhler K (2001) Changes of MQW photoluminescence under alpha particle irradiation. Superlatt and Microstruct 29: 281–285

    Article  ADS  Google Scholar 

  26. Gramlich S, Nebauer E, Sebastian J, Beister G (2001) Damage profile of He implantation in AlGaAs laser diode material detected by photoluminescence. Electron Lett 37: 463–464

    Article  Google Scholar 

  27. Kalish R, Kramer L-Y, Law K-K, Merz JL, Feldman LC, Jacobson DC, Weir BE (1992) Local intermixing of GaAs/GaA1As quantum structures by individual ion implant tracks. Appl Phys Lett 61: 2589–2591

    Article  ADS  Google Scholar 

  28. Leon R, Swift GM, Magness B, Taylor WA, Tang YS, Wang KL, Dowd P, Zhang YH (2000) Changes in luminescence emission induced by proton irradiation: InGaAs/GaAs quantum wells and quantum dots. Appl Phys Lett 76: 2074–2076

    Google Scholar 

  29. Rao MV, Hong W-P, Caneau C, Chang G-K, Papanicolaou N, Dietrich HB (1991) In0.53Ga0.47As metal-semiconductor-metal photodetector using proton bombarded p-type material. J Appl Phys 70: 3943–3945

    Article  ADS  Google Scholar 

  30. Marsh JH (1993) Quantum well intermixing. Semicond Sci Technol 8: 1136–1155

    Article  ADS  Google Scholar 

  31. Kash K, Tell B, Grabbe P, Dobisz EA, Craighead HG, Tamargo MC (1988) Aluminum ion-implantation enhanced intermixing of GaAs-AlGaAs quantum-well structures. J Appl Phys 63: 190–194

    Article  ADS  Google Scholar 

  32. Hirayama Y (1989) Mechanism of Ga implantation-induced intermixing of GaAsAlGaAs material. Jpn J Appl Phys 28: L162 - L165

    Article  ADS  Google Scholar 

  33. Charbonneau S, Poole PJ, Piva PG, Aers GC, Koteles ES, Fallahi M, He J-J, McCaffrey JP, Buchanan M, Dion M, Goldberg RD, Mitchell IV (1995) Quantum-well intermixing for optoelectronic integration using high energy ion implantation. J Appl Phys 78: 3697–3705

    Article  ADS  Google Scholar 

  34. Cibert J, Petroff PM, Werder DJ, Pearton SJ, Gossard AC, English JH (1986) Kinetics of implantation enhanced interdiffusion of Ga and Al at GaAs-GaxAl1−xAs interfaces. Appt Phys Lett 49: 223–225

    Article  ADS  Google Scholar 

  35. Elman B, Koteles ES, Melman P, Armiento A (1989) GaAs/AIGaAs quantum-well intermixing using shallow ion implantation and rapid thermal annealing. J Appt Phys 66: 2104–2107

    Article  ADS  Google Scholar 

  36. Piva PG, Poole PJ, Buchanan M, Champion G, Templeton I, Aers GC, Williams R, Wasilewski ZR, Koteles ES, Charbonneau S (1994) Enhanced compositional disordering of quantum wells in GaAs/AlGaAs and InGaAs/GaAs using focused Ga+ ion beams. Appl Phys Lett 65: 621–623

    Article  ADS  Google Scholar 

  37. Vieu C, Schneider M, Planel R, Launois H, Descouts B, Gao Y (1991) Mixing of GaAs/(Ga,Al)As interfaces by Ge implantation. J Appl Phys 70: 1433–1443

    Article  ADS  Google Scholar 

  38. Cibert J, Petroff PM, Dolan GJ, Pearton SJ, Gossard AC, English JH (1986) Optically detected carrier confinement to one and zero dimension in GaAs quantum well wires and boxes. Appl Phys Lett 49: 1275–1277

    Article  ADS  Google Scholar 

  39. Hiramoto T, Hirakawa K, Iye Y, Ikoma T (1987) One-dimensional GaAs wires fabricated by focused ion beam implantation. Appl Phys Lett 51: 1620–1622

    Article  ADS  Google Scholar 

  40. Hirayama Y, Tarucha S, Suzuki Y, Okamoto H (1988) Fabrication of a GaAs quantumwell-wire structure by Ga focused-ion-beam implantation and its optical properties. Phys Rev B 37: 2774–2777

    Article  ADS  Google Scholar 

  41. Laruelle F, Hu P, Simes R, Kubena R, Robinson W, Merz J, Petroff PM (1989) Implantation enhanced interdiffusion in GaAs/GaAlAs quantum structures. J Vac Sci Technol B 7: 2034–2038

    Article  Google Scholar 

  42. Petroff PM, Li YZ, Xu Z, Beinstingl W, Sasa S, Ensslin K (1991) Nanostructures processing by focused ion beam implantation. J Vac Sci Technol B 9: 3074–3078

    Article  Google Scholar 

  43. Allard LB, Aers GC, Charbonneau S, Jackman TE, Williams RL, Templeton IM, Buchanan M, Stevanovic D, Almeida FJD (1992) Fabrication of nanostructures in strained InGaAs/GaAs quantum wells by focused-ion-beam implantation. J Appl Phys 72: 422–428

    Article  ADS  Google Scholar 

  44. Poole PJ, Piva PG, Buchanan M, Aers GC, Roth AP, Dion M, Wasilewski ZR, Koteles ES, Charbonneau S, Beauvais J (1994) The enhancement of quantum well intermixing through repeated ion implantation. Semicond Sci Technol 9: 2134–2137

    Article  ADS  Google Scholar 

  45. Tan HH, Williams JS, Jagadish C, Burke PT, Gal M (1996) Large energy shifts in GaAs-AlGaAs quantum wells by proton irradiation-induced intermixing. Appl Phys Lett 68: 2401–2403

    Article  ADS  Google Scholar 

  46. Tan HH, Jagadish C (1997) Wavelength shifting in GaAs quantum well lasers by proton irradiation Appl Phys Lett 71: 2680–2682

    Google Scholar 

  47. Dao LV, Johnston MB, Gal M, Fu L, Tan HH, Jagadish C (1998) Improved carrier collection in intermixed InGaAs/GaAs quantum wells. Appl Phys Lett 73: 3408. 3410

    ADS  Google Scholar 

  48. Fu L, Tan HH, Johnston MB, Gal M, Jagadish C (1999) Proton irradiation-induced intermixing in InGaAs/(Al)GaAs quantum wells and quantum-well lasers. J Appl Phys 85: 6786–6789

    Article  ADS  Google Scholar 

  49. Piva PG, Charbonneau S, Mitchell IV, Goldberg RD (1996) Effect of implantation dose on photoluminescence decay times in intermixed GaAs/AIGaAs quantum wells. Appl Phys Lett 68: 2252–2254

    Article  ADS  Google Scholar 

  50. Johnston MB, Gal M, Li N, Chen Z, Liu X, Li N, Lu W, Shen SC, Fu L, Tan HH, Jagadish C (1999) Interdiffused quantum-well infared photodetectors for color sensitive arrays. Appl Phys Lett 75: 923–925

    Article  ADS  Google Scholar 

  51. Kahen KB, Rajeswaran G (1989) Study of the interdiffusion of GaAs-AlGaAs interfaces during rapid thermal annealing of ion-implanted structures. J Appl Phys 66: 545–551

    Article  ADS  Google Scholar 

  52. Leon R, Williams DRM, Krueger J, Weber ER, Melloch MR (1997) Diffusivity transients and radiative recombination in intermixed In0.5Ga05As/GaAs quantum structures. Phys Rev B 56: R4336 - R4339

    Article  ADS  Google Scholar 

  53. Yousefi GH, Webb JB, Rousina R, Khanna SM (1995) Electron irradiation induced defects and Schottky diode characteristics for Metalorganic Vapor Phase Epitaxy and Molecular Beam Epitaxial n-GaAs. J Electron Materials 24: 15–20

    Article  ADS  Google Scholar 

  54. Zaidi MA, Maaref H, Zazoui M, Bourgoin JC (1993) Defects in electron-irradiated GaAlAs alloys. J Appl Phys 74: 284–290

    Article  ADS  Google Scholar 

  55. Chaabane H, Bourgoin JC (1994) Irradiation effect in electron transport through GaAIAs barriers. Appl Phys Lett 64: 1006–1008

    Article  ADS  Google Scholar 

  56. Lang DV, Hartman RL, Schumaker NE (1976) Capacitance spectroscopy studies of degraded AlxGa1−xAs DH stripe-geometry lasers. J Appl Phys 47: 4986–4992

    Article  ADS  Google Scholar 

  57. Lang DV, Logan RA, Kimerling LC (1977) Identification of the defect state associated with a gallium vacancy in GaAs and AlxGa1−xAs. Phys Rev B 15: 4874–4882

    Article  ADS  Google Scholar 

  58. Papastamatiou M, Arpatzanis N, Papaioannou GJ, Papastergiou C, Christou A (1997) Neutron radiation effects in high electron mobility transistors IEEE Trans Electron Devices 44: 364–372

    Article  Google Scholar 

  59. Irvine AC, Palmer DW (1994) Demonstration of gallium-defect annealing at 280 K in irradiated GaAs and AlxGa1−xAs. Phys Rev B 49: 5695–5698

    Article  ADS  Google Scholar 

  60. Barnes CE, Zipperian TE, Dawson LR (1985) Neutron-induced trapping levels in Aluminum Gallium Arsenide. J Electron Mater 14: 95–118

    Article  ADS  Google Scholar 

  61. Munoz E, Garcia F, Jimenez B, Calleja E, Gomez A, Alcober V (1985) EL2-related defects in neutron irradiated GaAs1−xPx alloys. Appl Phys Lett 47: 798–800

    Article  ADS  Google Scholar 

  62. Garcia F, Munoz E, Calleja E, Alcober V (1986) Damage constant and deep-level transient spectroscopy in neutron irradiated GaAsP alloys. J Electron Mater 15: 133–139

    Article  ADS  Google Scholar 

  63. Walters RJ, Shaw GJ, Summers GP, Burke EA, Messenger SR (1992) Radiation effects in Ga047In0.53As devices. IEEE Trans Nucl Sci 39: 2257–2264

    Article  ADS  Google Scholar 

  64. Kudou T, Ohyama H, Simoen E, Claeys C, Vanhellemont J, Sigaki K, Takami Y, Fujii A (1999) Effect of irradiation on InGaAs photo devices. J Radioanalyt Nucl Chem 239: 361–364

    Article  Google Scholar 

  65. Ohyama H, Kudou T, Simoen E, Claeys C, Takami Y, Sunaga H (1999) Radiation damage of In053Ga047As photodiodes by high energy particles. J Mater Sci: Mat in Electron 10: 403–405

    Google Scholar 

  66. Onoda S, Hirao T, Laird JS, Kudou T, Ohyama H, Mori H, Okamoto T, Itoh H (2000) Gamma and electron radiation degradation of In0.53Ga047As p-i-n photodiodes. In: Proc RADECS 2000 Workshop, Louvain-la-Neuve, Belgium, pp 105–109

    Google Scholar 

  67. Ohyama H, Simoen E, Claeys C, Hakata T, Kudou T, Yoneoka M, Kobayashi K, Nakabayashi M, Takami Y, Sunaga H (1999) Radiation-induced lattice defects in InGaAsP laser diodes and their effects on device performance. Physica B 273–274: 1031–1033

    Article  ADS  Google Scholar 

  68. Zaidi MA, Maaref H, Zazoui M, Bourgoin JC (1994) Defects in electron irradiated GaP and GaInP. Mater Sci Forum 143–147: 295–298

    Article  Google Scholar 

  69. Khan A, Yamaguchi M, Bourgoin JC, de Angelis N, Takamoto T (2000) Room-temperature minority-carrier injection-enhanced recovery of radiation-induced defects in p-InGaP and solar cells. Appl Phys Lett 76: 2559–2561

    Article  ADS  Google Scholar 

  70. Khan A, Yamaguchi M, Bourgoin JC, Ando K, Takamoto T (2001) Recombination enhanced defect reactions in 1 MeV electron irradiated p InGaP. J Appl Phys 89: 4263–4268

    Article  ADS  Google Scholar 

  71. Barry AL, Houdayer AJ, Hinrichsen PF, Letourneau WG, Vincent J (1995) The energy dependence of lifetime damage constants in GaAs LEDs for 1–500 MeV protons. IEEE Trans Nucl Sci 42: 2104–2107

    Article  ADS  Google Scholar 

  72. Summers GP, Burke EA, Xapsos MA, Dale CJ, Marshall PW, Petersen EL (1988) Displacement damage in GaAs structures. IEEE Trans Nucl Sci 35: 1221–1226

    Article  ADS  Google Scholar 

  73. Reed RA, Marshall PW, Marshall CJ, Ladbury RL, Kim HS, Nguyen LX, Barth JL, LaBel KA (2000) Energy dependence of proton damage in A1GaAs light-emitting diodes. IEEE Trans Nucl Sci 47: 2492–2499

    Article  ADS  Google Scholar 

  74. Khanna SM, Estan D, bu HC, Gao M, Buchanan M, SpringThorpe AJ (2000) 1–15 MeV proton and alpha particle radiation effects on GaAs quantum well light emitting diodes. IEEE Trans Nucl Sci 47: 2508–2514

    Google Scholar 

  75. Barde S, Ecoffet R, Costeraste J, Meygret A, Hugon X (2000) Displacement damage effects in InGaAs detectors: Experimental results and semi-empirical model prediction. IEEE Trans Nucl Sci 47: 2466–2472

    Article  ADS  Google Scholar 

  76. Barry AL, Wojcik R, MacDiarmid AL (1989) Response of GaAs displacement damage monitors to protons, electrons and gamma irradiation. IEEE Trans Nucl Sci 36: 2400–2404

    Article  ADS  Google Scholar 

  77. Moss SC, Halle LF, Marvin DC (1995) Effects of electron beam irradiation on transient photoluminescence measurements of GaAs and AlGaAs double heterostructures. IEEE Trans Nucl Sci 42:2058–2065

    Article  ADS  Google Scholar 

  78. Johnston AH, Rax BG, Selva LE, Barnes CE (1999) Proton degradation of light emitting diodes. IEEE Trans Nucl Sci 46: 1781–1789

    Article  ADS  Google Scholar 

  79. Johnston AH, Miyahara TF (2000) Characterization of proton damage in light-emitting diodes. IEEE Trans Nucl Sci 47: 2500–2507

    Article  ADS  Google Scholar 

  80. Johnston AH (2000) Proton displacement damage in light-emitting and laser diodes. In Proc RADECS 2000 Workshop, Louvain-1a-Neuve; Belgium, pp 75–81

    Google Scholar 

  81. Li X, Gu SQ, Reuter EE, Verdeyen JT, Bishop SG, Coleman JJ (1996) Effect of e-beam irradiation on a p-n junction GaN light emitting diode. J Appl Phys 80: 2687–2690

    Article  ADS  Google Scholar 

  82. Lee SC, Zhao YF; Schrimpf RD, Neifeld MA, Galloway KF (1999) Comparison of lifetime and threshold current damage factors for multi-quantum-well ( MQW) GaAs/GaAlAs laser diodes irradiated at different proton energies. IEEE Trans Nucl Sci 46: 1797–1803

    Google Scholar 

  83. Jolly A,’Vicrey J (1994) Modelling threshold shift of power laser diodes under neutronic and photonic irradiation. In Proc RADECS ‘83; The IEEE, New York; pp 232–238

    Google Scholar 

  84. Zhao YF, Schrimpf RD, Patwary AR, Neifeld MA, Al-Johani AW, Weller RA, Galloway KF (1998) Annealing effects on multi-quantum well laser diodes after proton irradiation. IEEE Trans Nucl Sci 45: 2826–2832

    Article  ADS  Google Scholar 

  85. Kimerling LC (1978) Recombination enhanced defect reactions. Solid-State Electron 21: 1391–1401

    Article  ADS  Google Scholar 

  86. Lischka H, Henschel H, Lennartz W, Schmidt HU (1992) Radiation sensitivity of light emitting diodes (LED), Lased Diodes (LD) and Photodiodes (PD). In Proc RADECS 1991, The IEEE, New York, pp 423–427

    Google Scholar 

  87. Lischka H, Henschel H, Köhn O, Lennartz W, Schmidt HU (1994) Radiation effects in light emitting diodes, laser diodes, photodiodes and optocouplers,’ In Proc RADECS 1993, The IEEE, New York, pp 226–231

    Google Scholar 

  88. Shaw GJ, Messenger SR, Walters RJ, Summers GP (1993) Radiation-induced reverse dark currents in Ino.53Gao.47As photodiodes. J Appl Phys 73: 7244. 7249

    ADS  Google Scholar 

  89. Shaw GJ, Walters RJ, Messenger SR, Summers GP (1993) Time dependence of radiation-induced generation currents in irradiated InGaAs photodiodes. J Appl Phys 74: 1629–1635

    Article  ADS  Google Scholar 

  90. Ohyama H, Vanhellemont J, Takami Y, Hayama K, Kudou T, Kohiki S, Sunaga H, Hakata T (1996) Degradation of InGaAs pin photodiodes by neutron irradiation. Semicond Sci Technol 11: 1461–1463

    Article  ADS  Google Scholar 

  91. Ohyama H, Simoen E, Claeys C, Takami Y, Kudou T, Sunaga H (1998) Radiation source dependence of degradation and recovery of irradiated In0.53Ga.047As PIN photodiodes. In: Barbottin G, Dressendorfer P (eds) Proc RADECS ‘87, The IEEE, New York, pp 108–113

    Google Scholar 

  92. Kudou T, Ohyama H, Simoen E, Claeys C, Takami Y, Shigaki K, Fujii A, Sunaga H (1998) Radiation damage of InGaAs photodiodes by high energy particles. Mat Res Soc Proc 487: 471–476

    Article  Google Scholar 

  93. Liu HC, Wilson PH, Buchanan M, Khanna SM (1996) Nuclear radiation effects on GaAs/A1GaAs quantum well infrared photodetectors. In: Proc SPIE 2746: 134–141

    Google Scholar 

  94. Li L, Liu HC, Wilson PH, Buchanan M, Khanna SM (1997) Influence of high energy particle radiation on GaAs/A1GaAs quantum well infrared photodetectors. Semicond Sci Technol 12: 947–952

    Article  ADS  Google Scholar 

  95. Hogsed MR, Paxton AH, Sanchez A, Marquez R, Joshi AM, Walsh DS, Schöne H (2000) Radiation-induced transient effects in InGaAs photodiodes. In: Proc RADECS 2000 Workshop, Louvain-la-Neuve, Belgium, pp 88–92

    Google Scholar 

  96. Söderqvist J, Eek LO, Collot J, Coulon JP, Dinkespiler B, Hostachy JY, Jevaud M, Lund-Jensen B, Merkel B, Monnier E, Olivetto C, de Saintignon P, Tisserant S (1997) Radiation hardness evaluation of an analogue optical link for operation at cryogenic temperatures. IEEE Trans Nucl Sci 44: 861–865

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Claeys, C., Simoen, E. (2002). Opto-Electronic Components for Space. In: Radiation Effects in Advanced Semiconductor Materials and Devices. Springer Series in Materials Science, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04974-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04974-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07778-4

  • Online ISBN: 978-3-662-04974-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics