Advertisement

Space Radiation Aspects of Silicon Bipolar Technologies

  • Cor Claeys
  • Eddy Simoen
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 57)

Abstract

Bipolar Junction Transistors (BJT) have important applications in analog or mixed signal ICs and BiCMOS (Bipolar Complementary Metal-Oxide-Semiconductor) circuits because of their current-drive capability, linearity, low noise and excellent matching characteristics. Furthermore, their microwave performance compares favorably with respect to CMOS, explaining the use in GHz telecommunications applications and low-cost system-on-chip (SOC) solutions. The implementation of a SiGe heterojunction base will further push the penetration of BiCMOS in the microwave IC market. In addition, BJTs are frequently used in space systems, including operational amplifiers, comparators and voltage regulators, in order to accomplish analog functions. Early generations of BJT based circuits mainly suffered from radiation-induced leakage currents associated with the degraded field-oxide isolation regions. However, solutions for these problems have been implemented in present-day technologies, so that other degradation mechanisms have become more important. In this chapter, an overview will be given related to radiation damage in submicron BJTs and HBTs. First the different type of device ar-chitectures (vertical, substrate, lateral BJT) will be briefly defined and the basic degradation mechanisms described. In Sect. 5.3, focus is on the radiation effects in vertical n-p-n BJTs, while Sect. 5.4 covers the radiation degradation in lateral and substrate BJTs. Sect. 5.5 is devoted to the radiation response of SiGe HBTs, while in the last section, some conclusions will be drawn.

Keywords

Collector Current Interface Trap Current Gain Thermally Stimulate Current Oxide Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Schrimpf RD (1996) Recent advances in understanding total-dose effects in bipolar transistors. IEEE Trans Nucl Sci 43: 787–796ADSCrossRefGoogle Scholar
  2. 2.
    Johnston AH, Plaag RE (1987) Models for total dose degradation of linear integrated circuits. IEEE Trans Nucl Sci 34: 1474–1480ADSCrossRefGoogle Scholar
  3. 3.
    Summers GP, Burke EA, Dale CJ, Wolicki EA, Marshall PW, Gehlhausen MA (1987) Correlation of particle-induced displacement damage in silicon. IEEE Trans Nucl Sci 34: 1134–1139ADSCrossRefGoogle Scholar
  4. 4.
    Dale CJ, Marshall PW, Summers GP, Wolicki EA (1989) Displacement damage equivalent to dose in silicon devices. Appl Phys Lett 54: 451–453ADSCrossRefGoogle Scholar
  5. 5.
    Dale C, Marshall P (1991) Displacement damage in Si imagers for space applications. In: Proc SPIE Charged-Coupled Devices and Solid State Optical Sensors II, vol 1447, pp 70–86CrossRefGoogle Scholar
  6. 6.
    Enlow EW, Pease RL, Combs WE, Schrimpf RD, Nowlin RN (1991) Response of advanced bipolar processes to ionizing radiation. IEEE Trans Nucl Sci 38: 1342–1351ADSCrossRefGoogle Scholar
  7. 7.
    Nowlin RN, Enlow EW, Schrimpf RD, Combs WE (1992) Trends in the total-dose response of modern bipolar transistors. IEEE Trans Nucl Sci 39: 2026–2035ADSCrossRefGoogle Scholar
  8. 8.
    Nowlin RN, Fleetwood DM, Schrimpf RD, Pease RL, Combs WE (1993) Hardness-assurance and testing issues for bipolar/BiCMOS devices. IEEE Trans Nucl Sci 40: 1686–1693ADSCrossRefGoogle Scholar
  9. 9.
    Wei A, Kosier SL, Schrimpf RD, Combs WE, DeLaus M (1995) Excess collector current due to an oxide-trapped-charge-induced emitter in irradiated NPN BJTs IEEE Trans Electron Devices 42: 923–926Google Scholar
  10. 10.
    Kosier SL, Combs WE, Wei A, Schrimpf RD, Fleetwood DM, DeLaus M, Pease RL (1994) Bounding total-dose response of modern bipolar transistors IEEE Trans Nucl Sci 41: 1864–1870CrossRefGoogle Scholar
  11. 11.
    Wei A, Kosier SL, Schrimpf RD, Fleetwood DM, Combs WE (1994) Dose-rate effects on radiation-induced bipolar junction transistor gain degradation. Appl Phys Lett 65: 1918–1920ADSCrossRefGoogle Scholar
  12. 12.
    Nowlin RN, Fleetwood DM, Schrimpf RD (1994) Saturation of the dose-rate response of bipolar transistors below 10 rad(SiO2)/s: Implications for hardness assurance. IEEE Trans Nucl Sci 41: 2637–2641ADSCrossRefGoogle Scholar
  13. 13.
    Shaneyfelt MR, Schwank JR, Witczak SC, Fleetwood DM, Pease RL, Winokur PS, Riewe LC, Hash GL (2000) Thermal-stress effects and enhanced low dose rate sensistivity in linear bipolar ICs. IEEE Trans Nucl Sci 47: 2539–2545ADSCrossRefGoogle Scholar
  14. 14.
    Pease RL, Cohn LM, Fleetwood DM, Gehlhausen MA, Turflinger TL, Brown DB, Johnston AH (1997) A proposed hardness assurance test methodology for bipolar linear circuits and devices in a space ionizing radiation environment. IEEE Trans Nucl Sci 44: 1981–1988ADSCrossRefGoogle Scholar
  15. 15.
    Fleetwood DM, Kosier SL, Nowlin RN, Schrimpf RD, Reber Jr RA, DeLaus M, Winokur PS, Wei A, Combs WE, Pease RL (1994) Physical mechanisms contributing to enhanced bipolar gain degradation at low dose rates. IEEE Trans Nucl Sci 41: 1871–1883ADSCrossRefGoogle Scholar
  16. 16.
    Fleetwood DM, Riewe LC, Schwank JR, Witczak SC, Schrimpf RD (1996) Radiation effects at low electric fields in thermal, SIMOX, and bipolar-base oxides. IEEE Trans Nucl Sci 43: 2537–2546Google Scholar
  17. 17.
    Freitag RK, Brown DB (1998) Study of low dose rate radiation effects on commercial linear bipolar ICs. IEEE Trans Nucl Sci 45: 2649–2658ADSCrossRefGoogle Scholar
  18. 18.
    Belyakov VV, Pershenkov VS, Shalnov AV, Shvetzov-Shilovsky IN (1995) Use of MOS structures for the investigation of low-dose-rate effects in bipolar transistors. IEEE Trans Nucl Sci 42: 1660–1666ADSCrossRefGoogle Scholar
  19. 19.
    Pershenkov VS, Maslov VB, Cherepko SV, Shvetzov-Shilovsky IN, Belyakov VV, Sogoyan AV, Rusanovsky VI, Ulimov VN, Emelianov VV, Nasibullin VS (1997) The effect of emitter junction bias on the low dose-rate radiation response of bipolar devices. IEEE Trans Nucl Sci 44: 1840–1848ADSCrossRefGoogle Scholar
  20. 20.
    Witczak SC, Galloway KF, Schrimpf RD, Suehle JS (1995) Relaxation of Si-SiO2 interfacial stress in bipolar screen oxides due to ionizing radiation. IEEE Trans Nucl Sci 42: 1689–1697ADSCrossRefGoogle Scholar
  21. 21.
    Kosier SL, Schrimpf RD, Nowlin RN, Fleetwood DM, DeLaus M, Pease RL, Combs WE, Wei A, Chai F (1993) Charge separation for bipolar transistors IEEE Trans Nucl Sci 40: 1276–1285ADSCrossRefGoogle Scholar
  22. 22.
    Graves RJ, Schmidt DM, Kosier SL, Wei A, Schrimpf RD, Galloway KF (1994) Visualization of ionizing-radiation and hot-carrier stress response of polysilicon emitter BJTs. In: IEDM Tech Dig, The IEEE, New York, pp 233–236Google Scholar
  23. 23.
    Kosier SL, Wei A, Schrimpf RD, Fleetwood DM, DeLaus MD, Pease RL, Combs WE (1995) Physically based comparison of hot-carrier-induced and ionizing-radiationinduced degradation in BJTs IEEE Trans Electron Devices 42: 436–443Google Scholar
  24. 24.
    Roldan JM, Niu G, Ansley WE, Cressler JD, Clark SD, Ahlgren DC (1998) An investigation of the spatial location of proton-induced traps in SiGe HBTs. IEEE Trans Nucl Sci 45: 2424–2429ADSCrossRefGoogle Scholar
  25. 25.
    Jenkins KA, Cressler JD (1988) Electron beam damage of advanced silicon bipolar transistors and circuits. In: IEDM Tech Dig, The IEEE, New York, pp 30–33Google Scholar
  26. 26.
    Jenkins KA, Cressler JD, Warnock JD (1991) Use of electron-beam irradiation to study performance degradation of bipolar transistors after reverse-bias stress. In: IEDM Tech Dig, The IEEE, New York, pp 873–876Google Scholar
  27. 27.
    Pease RL, Kosier SL, Schrimpf RD, Combs WE, Davey M, DeLaus M, Fleetwood DM (1994) Comparison of hot-carrier and radiation induced increases in base current in bipolar transistors. IEEE Trans Nucl Sci 41: 2567–2573ADSCrossRefGoogle Scholar
  28. 28.
    Johnston AH, Lee CI, Rax BG (1996) Enhanced damage in bipolar devices at low dose rates: Effects at very low dose rates. IEEE Trans Nucl Sci 43: 3049–3059Google Scholar
  29. 29.
    Jenkins KA (1989) Frequency response of bipolar junction transistors after electron-beam irradiation. IEEE Trans Electron Devices 36: 1722–1724ADSCrossRefGoogle Scholar
  30. 30.
    Jenkins KA, Cressler JD (1991) Electron-beam damage of self-aligned silicon bipolar transistors and circuits. IEEE Trans Electron Devices 38: 1450–1457ADSCrossRefGoogle Scholar
  31. 31.
    Simoen E, Decoutere S, Merron B, Deferm L, Claeys C, Berger G, Ryckewaert G, Ohyama H, Sunaga H (1998) High-energy particle irradiation effects in 0.5 pm BiCMOS polysilicon emitter bipolar junction transistors. In: Barbottin G, Dressendorfer P (eds) Proc RADECS ‘87, The IEEE, New York, pp 102–107Google Scholar
  32. 32.
    Hiemstra DM (1999) Dose rate dependence of the current noise performance of an ultra-low noise precision bipolar operational amplifier. IEEE Trans Nucl Sci 46: 1674–1679ADSCrossRefGoogle Scholar
  33. 33.
    Witczak SC; Lacoe RC, Mayer DC, Fleetwood DM, Schrimpf RD, Galloway KF (1998) Space charge limited degradation of bipolar oxides at low electric fields IEEE Trans Electron Devices 45: 2339–2351Google Scholar
  34. 34.
    Witczak SC, Lacoe RC, Shaneyfelt MR, Mayer DC, Schwank JR, Winokur PS (2000) Implications of radiation-induced dopant deactivation for npn bipolar junction transistors. IEEE Trans Nucl Sci 47: 2281–2288ADSCrossRefGoogle Scholar
  35. 35.
    Witczak SC, Winokur PS, Lacoe RC, Mayer DC (2000) Charge separation technique for metal-oxide-silicon capacitors in the presence of hydrogen deactivated dopants. J Appl Phys 87: 8206–8208ADSCrossRefGoogle Scholar
  36. 36.
    Beaucour J, Carrière T, Gach A, Laxague D, Poirot P (1994) Total dose effects on negative voltage regulator IEEE Trans Nucl Sci 41: 2420–2426CrossRefGoogle Scholar
  37. 37.
    Johnston AH, Swift GM, Rax BG (1994) Total dose effects in conventional bipolar transistors and linear integrated circuits. IEEE Trans Nucl Sci 41: 2427–2436ADSCrossRefGoogle Scholar
  38. 38.
    McClure S, Pease RL, Will W, Perry G (1994) Dependence of total dose response of bipolar linear microcircuits on applied dose rate IEEE Trans Nucl Sci 41: 2544–2549Google Scholar
  39. 39.
    Johnston AH, Rax BG, Lee CI (1995) Enhanced damage in linear bipolar integrated circuits at low dose rate. IEEE Trans Nucl Sci 42: 1650–1659ADSCrossRefGoogle Scholar
  40. 40.
    Barnaby H, Tausch HJ, Turfler R, Cole P, Baker P, Pease RL (1996) Analysis of bipolar linear circuit response mechanisms for high and low dose rate total dose irradiations IEEE Trans Nucl Sci 43: 3040–3048Google Scholar
  41. 41.
    Schmidt DM, Fleetwood DM, Schrimpf RD, Pease RL, Graves RJ, Johnson GH, Galloway KF, Combs WE (1995) Comparison of ionizing-radiation-induced gain degradation in lateral, substrate, and vertical PNP BJTs IEEE Trans Nucl Sci 41: 1541–1549Google Scholar
  42. 42.
    Schrimpf RD, Graves RJ, Schmidt DM, Fleetwood DM, Pease RL, Combs WE, De Laus M (1995) Hardness-assurance issues for lateral PNP bipolar junction transistors. IEEE Trans Nucl Sci 42: 1641–1649ADSCrossRefGoogle Scholar
  43. 43.
    Schmidt DM, Wu A, Schrimpf RD, Fleetwood DM, Pease RL (1996) Modeling ionizing radiation induced gain degradation of the lateral PNP bipolar junction transistor. IEEE Trans Nucl Sci 43: 3032–3039ADSCrossRefGoogle Scholar
  44. 44.
    Wu A, Schrimpf RD, Barnaby HJ, Fleetwood DM, Pease RL, Kosier SL (1997) Radiation-induced gain degradation in lateral PNP BJTs with lightly and heavily doped emitters IEEE Trans Nucl Sci 44: 1914–1921Google Scholar
  45. 45.
    Barnaby HJ, Cirba C, Schrimpf RD, Kosier S, Fouillat P, Montagner X (1998) Minimizing gain degradation in lateral pnp bipolar junction transistors using gate control. IEEE Trans Nucl Sci 46: 1652–1659ADSCrossRefGoogle Scholar
  46. 46.
    Babcock JA, Cressler JD, Vempati LS, Clark SD, Jaeger RC, Harame DL (1995) Ionizing radiation tolerance and low-frequency noise degradation in UHV/CVD SiGe HBTs. IEEE Electron Device Lett 16: 351–353ADSCrossRefGoogle Scholar
  47. 47.
    Babcock JA, Cressler JD, Vempati LS, Clark SD, Jaeger RC, Harame DL (1995) Ionizing radiation tolerance of high-performance SiGe HBTs grown by UHV/CVD. IEEE Trans Nucl Sci 42: 1558–1566ADSCrossRefGoogle Scholar
  48. 48.
    Banerjee G, Niu G, Cressler JD, Clark SD, Palmer MJ, Ahlgren DC (1999) Anomalous dose rate effects in gamma irradiated SiGe heterojunction bipolar transistors IEEE Trans Nucl Sci 46: 1620–1626Google Scholar
  49. 49.
    Roldân JM, Ansley WE, Cressler JD, Clark SD, Nguyen-Ngoc D (1997) Neutron radiation tolerance of advanced UHV/CVD SiGe HBT BiCMOS technology IEEE Trans Nucl Sci 44: 1965–1973CrossRefGoogle Scholar
  50. 50.
    Cressler JD, Hamilton MC, Mullinax GS, Li Y, Niu G, Marshall CJ, Marshall PW, Kim HS, Palmer MJ, Joseph AJ, Freeman G (2000) The effects of proton irradiation on the lateral and vertical scaling of UHV/CVD SiGe HBT BiCMOS technology. IEEE Trans Nucl Sci 47: 2515–2520ADSCrossRefGoogle Scholar
  51. 51.
    Ohyama H, Vanhellemont J, Takami Y, Hayama K, Sunaga H, Poortmans J, Caymax M (1995) Degradation of Si1−xGex epitaxial heterojunction bipolar transistors by 1-MeV fast neutrons. IEEE Trans Nucl Sci 42: 1550–1557ADSCrossRefGoogle Scholar
  52. 52.
    Zhang S, Niu G, Cressler JD, Clark SD, Ahlgren DC (1999) The effects of proton irradiation on the RF performance of SiGe HBTs. IEEE Trans Nucl Sci 46: 1716–1721ADSCrossRefGoogle Scholar
  53. 53.
    Zhang S, Niu G, Cressler JD, Mathew SJ, Gogineni U, Clark SD, Zampardi P, Pierson RL (2000) A comparison of the effects of gamma irradiation on SiGe HBT and GaAs HBT technologies IEEE Trans Nucl Sci 47: 2521–2527Google Scholar
  54. 54.
    Niu G, Juraver JB, Borgarino M, Jin Z, Cressler JD, Plana R, Llopis O, Mathew S, Zhang S, Clark S, Joseph AJ (2001) Impact of gamma irradiation on the RF phase noise capability of UHV/CVD SiGe HBTs. Solid-State Electron 45: 107–112ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Cor Claeys
    • 1
  • Eddy Simoen
    • 1
  1. 1.IMEC Leuven/BelgiumLeuvenBelgium

Personalised recommendations