Basic Radiation Damage Mechanisms in Semiconductor Materials and Devices

  • Cor Claeys
  • Eddy Simoen
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 57)


The semiconductor component and circuit operation in a radiation environment, as outlined in Chap. 1, is generally subjected to a mix of particles and photons, with quite a range of energies. Upon its trajectory through the material, a high-energy nuclear particle or photon may lose its kinetic energy in different ways, thereby creating various types of damage. This chapter describes the different interaction and damage mechanisms. Roughly speaking, they can be divided into ionisation and displacement damage effects, which are discussed in the Sect. 2.2. The impact of both damage mechanisms on material and device parameters and characteristics is the subject of Sect. 2.3. Examples are given for the case of silicon and the silicon-silicondioxide (Si-Si02) interface, as they are the dominant systems in advanced microelectronics and, therefore, also the best studied. Whenever relevant, results for other semiconductor materials (Ge, GaAs,...) are given. Specific damage mechanisms for III-V and opto-electronic components are addressed in the chapters dealing with these applications. In Sect. 2.4, a brief description is provided of the most powerful spectroscopic techniques, enabling a microscopic study of the radiation-induced defects. Final conclusions are drawn in Sect. 2.5.


Electron Paramagnetic Resonance Linear Energy Transfer Deep Level Transient Spectroscopy Radiation Defect Damage Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van Lint VA, Flanahan TM, Leadon RE, Naber JA, Rogers VC (1980) Mechanisms of radiation effects in electronic materials. Wiley Interscience, New YorkGoogle Scholar
  2. 2.
    Ma TP, Dressendorfer PV (1989) Ionizing radiation effects in MOS devices and circuits. Wiley Interscience, New YorkGoogle Scholar
  3. 3.
    Adams L, Holmes-Siedle A (1993) Handbook of radiation effects. Oxford Scientific Publishers, OxfordGoogle Scholar
  4. 4.
    McLean FB, Oldham TR (1987) Basic mechanisms of radiation effects in electronic materials and devices. US Army Lab Command, HDL-TR-2129. US Army Command, Harry Diamond Laboratories, MD, USAGoogle Scholar
  5. 5.
    Oldham TR, McLean FB, Boesch Jr HE, McGarrity JM (1989) An overview of radiation-induced interface traps in MOS structures. Semicond Sci Technol 4: 986–999ADSGoogle Scholar
  6. 6.
    Heijne EHM (1985) The use of semiconductor imagers in high energy particle physics. In: Proc SPIE Solid State Imagers Appl, vol 591, pp 2–11Google Scholar
  7. 7.
    Privitera V, Coffa S, Priolo F, Rimini E (1998) Migration and interaction of point defects at room temperature in crystalline silicon. Rivista del Nuovo Cimento 21: 1–52Google Scholar
  8. 8.
    Brotherton SD, Bradley P (1982) Defect production and lifetime control in electron and y-irradiated silicon. J Appl Phys 53: 5720–5732ADSGoogle Scholar
  9. 9.
    Buisson J, Gaillard R, Jaureguy J-C, Poirault G (1996) Effet de déplacement induit par les protons de grande énergie dans les dispositifs électroniques semi-conducteurs. In: Proc RADECS ‘85. The IEEE, New York, pp 19–24Google Scholar
  10. 10.
    Dale C, Marshall P (1991) Displacement damage in Si imagers for space applications. In: Proc SPIE Charged-Coupled Devices and Solid State Optical Sensors II, vol 1447, pp 70–86Google Scholar
  11. 11.
    Meese JM (1981) A review of NTD-induced defects in silicon. In: Narayan J, Tan TY (eds) Defects in Semiconductors. North-Holland, Amsterdam, pp 225–240Google Scholar
  12. 12.
    Dreier P (1990) High resistivity silicon for detector applications. Mud. Instrum Methods A288: 272–277ADSGoogle Scholar
  13. 13.
    Claeys C, Simoen E, Vanhellemont J (1996) Lattice defects in high resistivity silicon. In: Claeys CL, Rai-Choudhury P, Stallhofer P, Maurits JE (eds) Proc Fourth International Symposium on High Purity Silicon. The Electrochem Soc, Pennington, NJ, vol 96–13, pp 305–324Google Scholar
  14. 14.
    Haller EE, Itoh KM, Beeman JW (1996) Neutron transmutation doped (NTD) germanium thermistors for sub-mm bolometer applications. In: Proc 30th ESLAB Symposium on Submillimetre and Far-Infrared Space Instrumentation, ESA SP-388, pp 115–118Google Scholar
  15. 15.
    Ziegler JF, Biersack JP, Littmark U (1985) The Stopping Range of Ions in Solids. Pergamon, New YorkGoogle Scholar
  16. 16.
    Linnros J, Norlin P, Hallén A (1991) Depth resolved carrier lifetime measurements of proton irradiated thyristors. In: IEDM Tech Digest. The IEEE, New York, pp 157–160Google Scholar
  17. 17.
    Mapper D, Sanderson TK, Stephen JH, Farren J, Adams L, Harboe-Sorensen R (1985) An experimental study of the effect of absorbers on the LET of the fission particles emitted by Cf-252. IEEE Trans Nucl Sci 32: 4276–4281ADSGoogle Scholar
  18. 18.
    Vanhellemont J, Simoen E, Claeys C, Kaniava A, Gaubas E, Bosman G, Johlander B, Adams L, Clauws P (1994) On the impact of low fluence irradiation with MeV particles on silicon diode characteristics and related material properties. IEEE Trans Nucl Sci 41: 1924–1931ADSGoogle Scholar
  19. 19.
    Marshall PW, Dale CJ, Summers GP, Wolicki EA, Burke EA (1989) Proton, neutron and electron-induced displacement damage in germanium. IEEE Trans Nucl Sci 36: 1882–1888ADSGoogle Scholar
  20. 20.
    Goubet JJ, Stievenard D, Mathiot D, Zazoui M (1992) Electron-irradiation-induced defects in Si-Ge alloys. Phys Rev B 46: 10113–10118ADSGoogle Scholar
  21. 21.
    Summers GP, Burke EA, Xapsos MA, Dale CJ, Marshall PW, Petersen EL (1988) Displacement damage in GaAs structures. IEEE Trans Nucl Sci 35: 1221–1226ADSGoogle Scholar
  22. 22.
    Summers GP, Burke EA, Shapiro P, Messenger SR, Walters RJ (1993) Damage correlations in semiconductors exposed to gamma, electron and proton radiations. IEEE Trans Nucl Sci 40: 1372–1379ADSGoogle Scholar
  23. 23.
    Dale CJ, Marshall PW, Summers GP, Wolicki EA, Burke EA (1989) Displacement damage equivalent to dose in silicon devices. Appl Phys Lett 54: 451–453ADSGoogle Scholar
  24. 24.
    Dale CJ, Marshall PW, Burke EA, Summers GP, Bender GE (1989) The generation lifetime damage factor and its variance in silicon. IEEE Trans Nucl Sci 36: 1872–1881ADSGoogle Scholar
  25. 25.
    Petersen E (1981) Soft errors due to protons in the radiation belt. IEEE Trans Nucl Sci 28: 3981–3986ADSGoogle Scholar
  26. 26.
    McLean FB, Oldham TR (1982) Charge funneling in n-and p-type Si substrates IEEE Trans Nucl Sci 29: 2018–2020Google Scholar
  27. 27.
    McNulty PJ, Roth DR, Beauvias WJ, Abdel-Kader WG, Dinge DC (1991) Comparison of the charge collection properties of junctions and the SEU response of microelectronic circuits. Nucl Tracks Radiat Measurements 19: 929–938Google Scholar
  28. 28.
    Iwata H, Ohzone T (1995) Numerical simulation of single event latchup in the temperature range 77 — 450 K. IEEE Trans Nucl Sci 42: 148–154ADSGoogle Scholar
  29. 29.
    Srour JR, McGarrity JM (1988) Radiation effects on microelectronics. Proc IEEE 76: 1443–1469ADSGoogle Scholar
  30. 30.
    Boesch Jr HE, McGarrity JM (1976) Charge yield and dose effects in MOS capacitors at 80 K. IEEE Trans Nucl Sci 23: 1520–1525ADSGoogle Scholar
  31. 31.
    Boesch Jr HE, Dunn GJ (1991) Hole transport in SiO2 and reoxidized nitrided SiO2 gate insulators at low temperatures. IEEE Trans Nucl Sci 38: 1083–1088ADSGoogle Scholar
  32. 32.
    Klein RB, Saks NS, Shanfeld Z (1990) Saturation of radiation-induced threshold-voltage shifts in thin-oxide MOSFETs at 80 K IEEE Trans Nucl Sci 37: 1690–1695Google Scholar
  33. 33.
    Zupac D, Galloway KF, Schrimpf RD, Augier P (1993) Radiation-induced mobility degradation in p-channel double-diffused metal-oxide-semiconductor power transistors at 300 and 77 K. J Appl Phys 73: 2910–2915ADSGoogle Scholar
  34. 34.
    McWhorter PJ, Winokur PS (1986) Simple technique for separating the effects of interface traps and trapped-oxide charge in metal-oxide-semiconductor transistors. Appl Phys Lett 48: 133–135ADSGoogle Scholar
  35. 35.
    Witczak SC, Winokur PS, Lacoe RC, Mayer DC (2000) Charge separation technique for metal-oxide-semiconductor capacitors in the presence of hydrogen deactivated dopants. J Appl Phys 87: 8206–8208ADSGoogle Scholar
  36. 36.
    Groeseneken G, Maes HE, Beltran N, De Keersmaecker RF (1984) A reliable approach to charge-pumping measurements in MOS transistors. IEEE Trans Electron Devices 31: 42–53Google Scholar
  37. 37.
    Fleetwood DM, Meisenheimer TL, Scofield JH (1994) 1/f noise and radiation effects in MOS devices. IEEE Trans Electron Devices 41: 1953–1964ADSGoogle Scholar
  38. 38.
    Chen W, Balasinski A, Ma T-P (1991) Lateral distribution of radiation-induced damage in MOSFET’s. IEEE Trans Nucl Sci 38: 1124–1129ADSGoogle Scholar
  39. 39.
    Balasinski A, Ma T-P (1992) Ionizing radiation damage near CMOS transistor channel edges. IEEE Trans Nucl Sci 39: 1998–2003ADSGoogle Scholar
  40. 40.
    Balasinski A, Ma T-P (1993) Impact of radiation-induced nonuniform damage near MOSFET junctions. IEEE Trans Nucl Sci 40: 1286–1292ADSGoogle Scholar
  41. 41.
    Acovic A, Dutoit M, Ilegems M (1990) Characterization of hot-electron-stressed MOSFET’ s by low-temperature measurements of the drain tunnel current IEEE Trans Electron Devices 37: 1467–1476Google Scholar
  42. 42.
    Rosar M, Leroy B, Schweeger G (2000) A new model for the description of gate voltage and temperature dependence of gate induced drain leakage ( GIDL) in the low electric field region. IEEE Trans Electron Devices 47: 154–159Google Scholar
  43. 43.
    Giebel T, Goser K (1989) Hot-carrier degradation of n-channel MOSFET’s characterized by a gated-diode measurement technique. IEEE Electron Device Lett 10: 76–78ADSGoogle Scholar
  44. 44.
    Neugroschel A, Sah C-T, Han KM, Carroll MS, Nishida T, Kavalieros JT, Lu Y (1995) Direct-current measurements of oxide and interface traps on oxidized silicon IEEE Trans Electron Devices 42: 1657–1661Google Scholar
  45. 45.
    Speckbacher P, Berger J, Asenov A, Koch F, Weber W (1995) The “gated-diode” configuration in MOSFET’ s, A sensitive tool for characterizing hot-carrier degradation. IEEE Trans Electron Devices 42: 1287–1295Google Scholar
  46. 46.
    Okhonin S, Hessler T, Dutoit M (1996) Comparison of gate-induced drain leakage and charge pumping measurements for determining lateral interface trap profiles in electrically stressed MOSFET’s. IEEE Trans Electron Devices 43: 605–611ADSGoogle Scholar
  47. 47.
    Fitzgerald DJ, Grove AS (1968) Surface recombination in semiconductors. Surface Science 9: 347–369ADSGoogle Scholar
  48. 48.
    Becker C, Gössling C, Lichau C, Wübben T, Wüstenfeld J, Wunstorf R (2000) Gate-controlled diodes for characterization of the Si-SiO2 interface with respect to surface effects of silicon detectors. Nucl Instrum Methods in Physics Research A 444: 605–613ADSGoogle Scholar
  49. 49.
    Mogro-Campero A, Chang MF, Benjamin JL (1988) Resistance changes in silicon by MeV proton implantation. J Electrochem Soc 135: 172–176Google Scholar
  50. 50.
    Ntsoenzok E, Barbot JF, Desgardin P, Vernois J, Blanchard C, Isabelle DB (1994) Study of the defects induced in n-type silicon irradiated by 1–3 MeV protons IEEE Trans Nucl Sci 41: 1932–1936Google Scholar
  51. 51.
    Ntsoenzok E, Desgardin P, Saillard M, Vernois J, Barbot JF (1996) Evolution of shallow donors with proton fluence in n-type silicon. J Appl Phys 79: 8274–8277ADSGoogle Scholar
  52. 52.
    Yamaguchi M, Taylor SJ, Yang M-J, Matsuda S, Kawasaki O, Hisamatsu T (1996) High-energy and high-fluence proton irradiation effects in silicon solar cells. J Appl Phys 80: 4916–4920ADSGoogle Scholar
  53. 53.
    Matsuura H, Uchida Y, Nagai N, Hisamatsu T, Aburaya T, Matsuda S (2000) Temperature dependence of the electron concentration in type-converted silicon by 1x1017 cm−2 fluence irradiation of 1 MeV electrons. Appl Phys Lett 76: 2092–2094ADSGoogle Scholar
  54. 54.
    Keskitalo N, Hallén A (1994) Resistivity profile measurements of proton-irradiated n-type silicon. Solid-State Electron 37: 55–60ADSGoogle Scholar
  55. 55.
    Lemeilleur F, Glaser M, Heijne EHM, Jarron P, Occelli E (1992) Neutron-induced radiation damage in silicon detectors. IEEE Trans Nucl Sci 39: 551–557ADSGoogle Scholar
  56. 56.
    Bates SJ, Dezillie B, Furetta C, Glaser M, Lemeilleur F, León-Florian E (1996) Proton irradiation of various resistivity silicon detectors IEEE Trans Nucl Sci 43: 1002–1008Google Scholar
  57. 57.
    Li J (1989) Novel semiconductor substrate formed by hydrogen ion implantation into silicon. Appl Phys Lett 55: 2223–2224ADSGoogle Scholar
  58. 58.
    Li J (2000) The new exploration for proton-implanted silicon: the conversion of a surface-region-purification-induced p-n junction into a p-i-n electrical structure approaching silicon-on-insulator. Semicond Sci Technol 15: L6 - L9ADSGoogle Scholar
  59. 59.
    Wu YH, Chin A, Shih KH, Wu CC, Liao CP, Pai SC, Chi CC (2000) Fabrication of very high resistivity Si with low loss and cross talk. IEEE Electron Device Lett 21: 394396Google Scholar
  60. 60.
    Privitera V, Coffa S, Priolo F, Kyllesbech Larsen K, Mannino G (1996) Room-temperature migration and interaction of ion beam generated defects in crystalline silicon. Appl Phys Lett 68: 3422–3424ADSGoogle Scholar
  61. 61.
    Pease RL, Enlow EW, Dinger GL, Marshall P (1987) Comparison of proton and neutron carrier removal rates. IEEE Trans Nucl Sci 34: 1140–1146ADSGoogle Scholar
  62. 62.
    Gossick BR (1959) Disordered region in semiconductors bombarded by fast neutrons. J Appl Phys 30: 1214–1218ADSGoogle Scholar
  63. 63.
    Brudnyi VN, Gradoboev AV, Peshev VV (1999) The broad midgap deep-level transient spectroscopy band in proton (65 MeV) and fast neutron-irradiated n-GaAs. Phys Stat Sol (b) 212: 229–239ADSGoogle Scholar
  64. 64.
    Fourches N (1995) High defect density regions in neutron irradiated high-purity germanium: Characteristics and formation mechanisms. J Appl Phys 77: 3684–3689ADSGoogle Scholar
  65. 65.
    Bruzzi M, Borchi E, Baldini A (1992) Using thermally stimulated currents to visualize defect clusters in neutron-irradiated silicon. J Appl Phys 72: 4007–4013ADSGoogle Scholar
  66. 66.
    Watts SJ, Matheson J, Hopkins-Bond IH, Holmes-Siedle A, Mohammadzadeh A, Pace R (1996) A new model for generation-recombination in silicon depletion regions after neutron irradiation IEEE Trans Nucl Sci 43: 2587–2594Google Scholar
  67. 67.
    Gill K, Hall G, MacEvoy B (1997) Bulk damage effects in irradiated silicon detectors due to clustered divacancies. J Appl Phys 82: 126–136ADSGoogle Scholar
  68. 68.
    Schenk A, Krumbein U (1995) Coupled defect-level recombination: Theory and application to anomalous diode characteristics. J Appl Phys 78: 3185–3192Google Scholar
  69. 69.
    Takarabe K, Landsberg PT, Liakos JK (1997) Recombination statistics involving inter-trap recombination. Semicond Sci Technol 12: 687–691ADSGoogle Scholar
  70. 70.
    Giri PK, Mohapatra YN (2000) Capacitance transient spectroscopy models of coupled trapping kinetics among multiple defect states: Application to the study of trapping kinetics of defects in heavy-ion-damaged silicon. Phys Rev B 62: 2496–2504Google Scholar
  71. 71.
    Svensson BG, Mohadjeri B, Hallén A, Svensson JH, Corbett JW (1991) Divacancy acceptor levels in ion-irradiated silicon. Phys Rev B 43: 2292–2298ADSGoogle Scholar
  72. 72.
    Amekura H, Kishimoto N, Saito T (1995) Photoconductivity evolution due to carrier trapping by defects in 17 MeV-proton irradiated silicon. J Appl Phys 77: 4984–4992ADSGoogle Scholar
  73. 73.
    Simoen E, Vanhellemont J, Claeys C (1996) Effective generation-recombination parameters in high-energy proton irradiated silicon diodes. Appl Phys Lett 69: 2858–2860ADSGoogle Scholar
  74. 74.
    Markvart T (1990) Review: Radiation damage in solar cells. J Mat Sci Mat Electron 1: 1–12Google Scholar
  75. 75.
    Schroder DK (1990) Semiconductor Material and Device Characterization. WileyInterscience, New York, Chapter 8Google Scholar
  76. 76.
    Schroder DK (1997) Carrier lifetimes in silicon. IEEE Trans Electron Devices 44:160–170Google Scholar
  77. 77.
    Bullis WM, Huff HR (1996) Interpretation of carrier recombination and diffusion length measurements in silicon. J Electrochem Soc 143: 1399–1405Google Scholar
  78. 78.
    Hallén A, Keskitalo N, Masszi F, Ndgl V (1996) Lifetime in proton irradiated silicon. J Appl Phys 79: 3906–3914ADSGoogle Scholar
  79. 79.
    Simoen E, Vanhellemont J, Claeys C, Kaniava A, Gaubas E (1996) The response of Si p-n junction diodes to proton irradiations. Semicond Sci Technol 11: 1434–1442ADSGoogle Scholar
  80. 80.
    Mogro-Campero A, Love RP, Chang MF, Dyer R (1986) Localized lifetime control in insulated-gate transistors by proton implantation IEEE Trans Electron Devices 33: 1667–1671Google Scholar
  81. 81.
    Hüppi MW (1990) Proton irradiation of silicon: Complete electrical characterization of the induced recombination centers. J Appl Phys 68: 2702–2707ADSGoogle Scholar
  82. 82.
    Hallén A, Bakowski M, Lundqvist M (1993) Multiple proton energy irradiation for improved GTO thyristors. Solid-State Electron 36: 133–141ADSGoogle Scholar
  83. 83.
    Simoen E, Claeys C, Ohyama H (1998) Factors determining the damage coefficients and the low-frequency noise in MeV proton-irradiated silicon diodes IEEE Trans Nucl Sci 45: 89–97Google Scholar
  84. 84.
    Watkins GD (1969) A microscopic view of radiation damage in semiconductors using EPR as a probe. IEEE Trans Nucl Sci 16: 13–18ADSGoogle Scholar
  85. 85.
    Lenahan PM, Conley Jr JF (1998) What can electron paramagnetic resonance tell us about the Si/SiO2 system? J Vac Sci Technol B 16: 2134–2153Google Scholar
  86. 86.
    Henderson B, Pepper M, Vranch RL (1989) Spin-dependent and localisation effects at Si/SiO2 device interfaces. Semicond Sci Technol 4: 1045–1060ADSGoogle Scholar
  87. 87.
    Stathis JH (1996) Electrically detected magnetic resonance study of stress-induced leakage current in thin SiO2. Appl Phys Lett 68: 1669–1671ADSGoogle Scholar
  88. 88.
    Lepine DJ (1972) Spin dependent recombination in silicon surfaces. Phys Rev B 6: 436441Google Scholar
  89. 89.
    Krick JT, Lenahan PM, Dunn GJ (1991) Direct observation of interfacial point defects generated by channel hot hole injection in n-channel metal oxide silicon field effect transistors. Appl Phys Lett 59: 3437–3439ADSGoogle Scholar
  90. 90.
    Jupina MA, Lenahan PM (1989) A spin dependent recombination study of radiation induced defects at and near the Si/SiO2 interface. IEEE Trans Nucl Sci 36: 1800–1807ADSGoogle Scholar
  91. 91.
    Stathis JH, DiMaria DJ (1992) Identification of an interface defect generated by hot electrons in SiO2. Appl Phys Lett 61: 2887–2889ADSGoogle Scholar
  92. 92.
    Laiho R, Vlasenko LS, Vlasenko MP, Kozlov VA, Kozlovski VV (1999) Electron paramagnetic resonance of radiation defects in hydrogen-implanted silicon detected by spin-dependent microwave photoconductivity. Appl Phys Lett 74: 3948–3950ADSGoogle Scholar
  93. 93.
    Nubile P, Bourgoin JC, Stievenard D, Deresmes D, Strobl G (1992) Defects in low-temperature electron-irradiated p-type silicon. J Appl Phys 72: 2673–2679ADSGoogle Scholar
  94. 94.
    Watkins GD, Troxell JR, Chatterjee AP (1979) Vacancies and interstitials in silicon. Inst Phys Conf Ser No 46:Chapter 1, 16–30Google Scholar
  95. 95.
    Watkins GD (1999) Vacancies and interstitials and their interactions with other defects in silicon, In: Abe T, Bullis WM, Kobayashi S, Lin W, Wagner P (eds) Proc 3rd Int Symposium on Defects in Silicon. The Electrochem Soc, Pennington, NJ, vol 99–1, pp 38–52Google Scholar
  96. 96.
    Lenahan PM, Conley Jr JF, Wallace BD (1997) A model for hole trapping in SiO2 films on silicon. J Appl Phys 81: 6822–6824ADSGoogle Scholar
  97. 97.
    Lenahan PM, Mele JJ, Conley Jr JF, Lowry RK, Woodbury D (1999) Predicting radiation response from process parameters: Verification of a physically based predictive model. IEEE Trans Nucl Sci 46: 1534–1543Google Scholar
  98. 98.
    Lang DV (1974) Deep-level transient spectroscopy: A new method to characterize traps in semiconductors. J Appl Phys 45: 3023–3032ADSGoogle Scholar
  99. 99.
    Benton JL (1990) Characterization of defects in semiconductors by deep level transient spectroscopy. J Cryst Growth 106: 116–126ADSGoogle Scholar
  100. 100.
    Johnson NM, Bartelink DJ, Gold RB, Gibbons JF (1979) Constant-capacitance DLTS measurement of defect-density profiles in semiconductors. J Appl Phys 50: 4828–4833ADSGoogle Scholar
  101. 101.
    Watts, SJ (1998) Radiation induced defects in silicon. In: Claeys CL, Rai-Choudhury P, Watanabe M, Stallhofer P, Dawson HJ (eds) High Purity Silicon V. The Electrochem Soc, Pennington, NJ, vol 98–13, pp 355–370Google Scholar
  102. 102.
    Markvart T, Parton DP, Peters JW, Willoughby AFW (1994) DLTS of recombination centres in semiconductors. Materials Science Forum 143–147: 1381–1386Google Scholar
  103. 103.
    Deixler P, Terry J, Hawkins ID, Evans-Freeman JH, Peaker AR, Rubaldo L, Maude DK, Portal J-C, Dobaczewski L, Bonde Nielsen K, Nylandsted Larsen A, Mesh A (1998) Laplace-transform deep-level transient spectroscopy studies of the G4 gold-hydrogen complex in silicon. Appl Phys Lett 73: 3126–3128ADSGoogle Scholar
  104. 104.
    Yao X, Mou J, Qin G (1987) Shifts and splittings of electron energy levels of A centers in silicon under uniaxial stress. Phys Rev B 35: 5734–5739ADSGoogle Scholar
  105. 105.
    Samara GA (1987) Pressure dependence of deep electronic levels in semiconductors: The oxygen-vacancy pair (A centre) in silicon. Phys Rev B 36: 4841–4848ADSGoogle Scholar
  106. 106.
    Achtziger N, Gottschalk H, Licht T, Meier J, Rüb M, Reislöhner U, Witthuhn W (1995) Recoil implantation of radioactive transition metals and their investigation in silicon by deep-level transient spectroscopy. Appl Phys Lett 66: 2370–2372ADSGoogle Scholar
  107. 107.
    Peaker AR, Dobaczewski L, Andersen O, Rubaldo L, Hawkins ID, Bonde Nielsen K, Evans-Freeman JH (2000) Silicon defect characterization by high resolution Laplace Deep Level Transient Spectroscopy. In: Claeys CL, Rai-Choudhury P, Watanabe M, Stallhofer P, Dawson HJ (eds) High Purity Silicon VI, The Electrochem Soc, Pennington, NJ, vol 2000–17, pp 549–560Google Scholar
  108. 108.
    Goubet JJ, Sherman Christensen J, Mejlholm P, Nylandsted Larsen A (2000) Tin-related deep levels in p-and n-type silicon In: Claeys C (ed) Proc 2nd ENDEASD Workshop, pp 137–142Google Scholar
  109. 109.
    Watkins GD, Troxell JR (1980) Negative-U properties for point defects in silicon. Phys Rev Lett 44: 593–596ADSGoogle Scholar
  110. 110.
    Mukashev BN, Abdullin KhA, Gorelkinskii YuV (1997) Self-interstitials in irradiated silicon. Materials Science Forum 258–263: 541–546Google Scholar
  111. 111.
    Brelot A (1971) Tin as a vacancy trap in silicon at room temperature IEEE Trans Nucl Sci 19: 220–226Google Scholar
  112. 112.
    Brelot A, Charlemagne J (1971) Infrared studies of low temperature electron irradiated silicon containing germanium, oxygen and carbon. Radiation Effects 9: 65–73ADSGoogle Scholar
  113. 113.
    Svensson JH, Svensson BG, Monenar B (1988) Infrared absorption studies of the divacancy in silicon: New properties of the singly negative charge state. Phys Rev B 38: 4192–4197Google Scholar
  114. 114.
    Ascheron C (1991) Proton beam modification of selected AIIIBv compounds. Phys Stat Sol A 124: 11–55ADSGoogle Scholar
  115. 115.
    Davies G (1989) The optical properties of luminescence centres in silicon. Phys Reports 176: 83–188ADSGoogle Scholar
  116. 116.
    Thonke K, Teschner R, Sauer R (1987) New photoluminescence defect spectra in silicon irradiated at 100 K: Observation of interstitial carbon. Solid State Commun 61: 241–244Google Scholar
  117. 117.
    Nakamura M, Kitamura E, Misawa Y, Suzuki T, Nagai S, Sunaga H (1994) Photoluminescence measurement of carbon in silicon crystals irradiated with high energy electrons. J Electrochem Soc 141: 3576–3579Google Scholar
  118. 118.
    Nakamura M, Byrne AS, Kitamura E, Suzuki T, Nagai S, Sunaga H, Aoki Y, Naramoto H (1995) Enhanced photoluminescence detection of oxygen in silicon crystal by formation of carbon-oxygen complex through carbon implantation and electron irradiation. J Appl Phys 78: 4407–4410ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Cor Claeys
    • 1
  • Eddy Simoen
    • 1
  1. 1.IMEC Leuven/BelgiumLeuvenBelgium

Personalised recommendations