Skip to main content

Basic Radiation Damage Mechanisms in Semiconductor Materials and Devices

  • Chapter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 57))

Abstract

The semiconductor component and circuit operation in a radiation environment, as outlined in Chap. 1, is generally subjected to a mix of particles and photons, with quite a range of energies. Upon its trajectory through the material, a high-energy nuclear particle or photon may lose its kinetic energy in different ways, thereby creating various types of damage. This chapter describes the different interaction and damage mechanisms. Roughly speaking, they can be divided into ionisation and displacement damage effects, which are discussed in the Sect. 2.2. The impact of both damage mechanisms on material and device parameters and characteristics is the subject of Sect. 2.3. Examples are given for the case of silicon and the silicon-silicondioxide (Si-Si02) interface, as they are the dominant systems in advanced microelectronics and, therefore, also the best studied. Whenever relevant, results for other semiconductor materials (Ge, GaAs,...) are given. Specific damage mechanisms for III-V and opto-electronic components are addressed in the chapters dealing with these applications. In Sect. 2.4, a brief description is provided of the most powerful spectroscopic techniques, enabling a microscopic study of the radiation-induced defects. Final conclusions are drawn in Sect. 2.5.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van Lint VA, Flanahan TM, Leadon RE, Naber JA, Rogers VC (1980) Mechanisms of radiation effects in electronic materials. Wiley Interscience, New York

    Google Scholar 

  2. Ma TP, Dressendorfer PV (1989) Ionizing radiation effects in MOS devices and circuits. Wiley Interscience, New York

    Google Scholar 

  3. Adams L, Holmes-Siedle A (1993) Handbook of radiation effects. Oxford Scientific Publishers, Oxford

    Google Scholar 

  4. McLean FB, Oldham TR (1987) Basic mechanisms of radiation effects in electronic materials and devices. US Army Lab Command, HDL-TR-2129. US Army Command, Harry Diamond Laboratories, MD, USA

    Google Scholar 

  5. Oldham TR, McLean FB, Boesch Jr HE, McGarrity JM (1989) An overview of radiation-induced interface traps in MOS structures. Semicond Sci Technol 4: 986–999

    ADS  Google Scholar 

  6. Heijne EHM (1985) The use of semiconductor imagers in high energy particle physics. In: Proc SPIE Solid State Imagers Appl, vol 591, pp 2–11

    Google Scholar 

  7. Privitera V, Coffa S, Priolo F, Rimini E (1998) Migration and interaction of point defects at room temperature in crystalline silicon. Rivista del Nuovo Cimento 21: 1–52

    Google Scholar 

  8. Brotherton SD, Bradley P (1982) Defect production and lifetime control in electron and y-irradiated silicon. J Appl Phys 53: 5720–5732

    ADS  Google Scholar 

  9. Buisson J, Gaillard R, Jaureguy J-C, Poirault G (1996) Effet de déplacement induit par les protons de grande énergie dans les dispositifs électroniques semi-conducteurs. In: Proc RADECS ‘85. The IEEE, New York, pp 19–24

    Google Scholar 

  10. Dale C, Marshall P (1991) Displacement damage in Si imagers for space applications. In: Proc SPIE Charged-Coupled Devices and Solid State Optical Sensors II, vol 1447, pp 70–86

    Google Scholar 

  11. Meese JM (1981) A review of NTD-induced defects in silicon. In: Narayan J, Tan TY (eds) Defects in Semiconductors. North-Holland, Amsterdam, pp 225–240

    Google Scholar 

  12. Dreier P (1990) High resistivity silicon for detector applications. Mud. Instrum Methods A288: 272–277

    ADS  Google Scholar 

  13. Claeys C, Simoen E, Vanhellemont J (1996) Lattice defects in high resistivity silicon. In: Claeys CL, Rai-Choudhury P, Stallhofer P, Maurits JE (eds) Proc Fourth International Symposium on High Purity Silicon. The Electrochem Soc, Pennington, NJ, vol 96–13, pp 305–324

    Google Scholar 

  14. Haller EE, Itoh KM, Beeman JW (1996) Neutron transmutation doped (NTD) germanium thermistors for sub-mm bolometer applications. In: Proc 30th ESLAB Symposium on Submillimetre and Far-Infrared Space Instrumentation, ESA SP-388, pp 115–118

    Google Scholar 

  15. Ziegler JF, Biersack JP, Littmark U (1985) The Stopping Range of Ions in Solids. Pergamon, New York

    Google Scholar 

  16. Linnros J, Norlin P, Hallén A (1991) Depth resolved carrier lifetime measurements of proton irradiated thyristors. In: IEDM Tech Digest. The IEEE, New York, pp 157–160

    Google Scholar 

  17. Mapper D, Sanderson TK, Stephen JH, Farren J, Adams L, Harboe-Sorensen R (1985) An experimental study of the effect of absorbers on the LET of the fission particles emitted by Cf-252. IEEE Trans Nucl Sci 32: 4276–4281

    ADS  Google Scholar 

  18. Vanhellemont J, Simoen E, Claeys C, Kaniava A, Gaubas E, Bosman G, Johlander B, Adams L, Clauws P (1994) On the impact of low fluence irradiation with MeV particles on silicon diode characteristics and related material properties. IEEE Trans Nucl Sci 41: 1924–1931

    ADS  Google Scholar 

  19. Marshall PW, Dale CJ, Summers GP, Wolicki EA, Burke EA (1989) Proton, neutron and electron-induced displacement damage in germanium. IEEE Trans Nucl Sci 36: 1882–1888

    ADS  Google Scholar 

  20. Goubet JJ, Stievenard D, Mathiot D, Zazoui M (1992) Electron-irradiation-induced defects in Si-Ge alloys. Phys Rev B 46: 10113–10118

    ADS  Google Scholar 

  21. Summers GP, Burke EA, Xapsos MA, Dale CJ, Marshall PW, Petersen EL (1988) Displacement damage in GaAs structures. IEEE Trans Nucl Sci 35: 1221–1226

    ADS  Google Scholar 

  22. Summers GP, Burke EA, Shapiro P, Messenger SR, Walters RJ (1993) Damage correlations in semiconductors exposed to gamma, electron and proton radiations. IEEE Trans Nucl Sci 40: 1372–1379

    ADS  Google Scholar 

  23. Dale CJ, Marshall PW, Summers GP, Wolicki EA, Burke EA (1989) Displacement damage equivalent to dose in silicon devices. Appl Phys Lett 54: 451–453

    ADS  Google Scholar 

  24. Dale CJ, Marshall PW, Burke EA, Summers GP, Bender GE (1989) The generation lifetime damage factor and its variance in silicon. IEEE Trans Nucl Sci 36: 1872–1881

    ADS  Google Scholar 

  25. Petersen E (1981) Soft errors due to protons in the radiation belt. IEEE Trans Nucl Sci 28: 3981–3986

    ADS  Google Scholar 

  26. McLean FB, Oldham TR (1982) Charge funneling in n-and p-type Si substrates IEEE Trans Nucl Sci 29: 2018–2020

    Google Scholar 

  27. McNulty PJ, Roth DR, Beauvias WJ, Abdel-Kader WG, Dinge DC (1991) Comparison of the charge collection properties of junctions and the SEU response of microelectronic circuits. Nucl Tracks Radiat Measurements 19: 929–938

    Google Scholar 

  28. Iwata H, Ohzone T (1995) Numerical simulation of single event latchup in the temperature range 77 — 450 K. IEEE Trans Nucl Sci 42: 148–154

    ADS  Google Scholar 

  29. Srour JR, McGarrity JM (1988) Radiation effects on microelectronics. Proc IEEE 76: 1443–1469

    ADS  Google Scholar 

  30. Boesch Jr HE, McGarrity JM (1976) Charge yield and dose effects in MOS capacitors at 80 K. IEEE Trans Nucl Sci 23: 1520–1525

    ADS  Google Scholar 

  31. Boesch Jr HE, Dunn GJ (1991) Hole transport in SiO2 and reoxidized nitrided SiO2 gate insulators at low temperatures. IEEE Trans Nucl Sci 38: 1083–1088

    ADS  Google Scholar 

  32. Klein RB, Saks NS, Shanfeld Z (1990) Saturation of radiation-induced threshold-voltage shifts in thin-oxide MOSFETs at 80 K IEEE Trans Nucl Sci 37: 1690–1695

    Google Scholar 

  33. Zupac D, Galloway KF, Schrimpf RD, Augier P (1993) Radiation-induced mobility degradation in p-channel double-diffused metal-oxide-semiconductor power transistors at 300 and 77 K. J Appl Phys 73: 2910–2915

    ADS  Google Scholar 

  34. McWhorter PJ, Winokur PS (1986) Simple technique for separating the effects of interface traps and trapped-oxide charge in metal-oxide-semiconductor transistors. Appl Phys Lett 48: 133–135

    ADS  Google Scholar 

  35. Witczak SC, Winokur PS, Lacoe RC, Mayer DC (2000) Charge separation technique for metal-oxide-semiconductor capacitors in the presence of hydrogen deactivated dopants. J Appl Phys 87: 8206–8208

    ADS  Google Scholar 

  36. Groeseneken G, Maes HE, Beltran N, De Keersmaecker RF (1984) A reliable approach to charge-pumping measurements in MOS transistors. IEEE Trans Electron Devices 31: 42–53

    Google Scholar 

  37. Fleetwood DM, Meisenheimer TL, Scofield JH (1994) 1/f noise and radiation effects in MOS devices. IEEE Trans Electron Devices 41: 1953–1964

    ADS  Google Scholar 

  38. Chen W, Balasinski A, Ma T-P (1991) Lateral distribution of radiation-induced damage in MOSFET’s. IEEE Trans Nucl Sci 38: 1124–1129

    ADS  Google Scholar 

  39. Balasinski A, Ma T-P (1992) Ionizing radiation damage near CMOS transistor channel edges. IEEE Trans Nucl Sci 39: 1998–2003

    ADS  Google Scholar 

  40. Balasinski A, Ma T-P (1993) Impact of radiation-induced nonuniform damage near MOSFET junctions. IEEE Trans Nucl Sci 40: 1286–1292

    ADS  Google Scholar 

  41. Acovic A, Dutoit M, Ilegems M (1990) Characterization of hot-electron-stressed MOSFET’ s by low-temperature measurements of the drain tunnel current IEEE Trans Electron Devices 37: 1467–1476

    Google Scholar 

  42. Rosar M, Leroy B, Schweeger G (2000) A new model for the description of gate voltage and temperature dependence of gate induced drain leakage ( GIDL) in the low electric field region. IEEE Trans Electron Devices 47: 154–159

    Google Scholar 

  43. Giebel T, Goser K (1989) Hot-carrier degradation of n-channel MOSFET’s characterized by a gated-diode measurement technique. IEEE Electron Device Lett 10: 76–78

    ADS  Google Scholar 

  44. Neugroschel A, Sah C-T, Han KM, Carroll MS, Nishida T, Kavalieros JT, Lu Y (1995) Direct-current measurements of oxide and interface traps on oxidized silicon IEEE Trans Electron Devices 42: 1657–1661

    Google Scholar 

  45. Speckbacher P, Berger J, Asenov A, Koch F, Weber W (1995) The “gated-diode” configuration in MOSFET’ s, A sensitive tool for characterizing hot-carrier degradation. IEEE Trans Electron Devices 42: 1287–1295

    Google Scholar 

  46. Okhonin S, Hessler T, Dutoit M (1996) Comparison of gate-induced drain leakage and charge pumping measurements for determining lateral interface trap profiles in electrically stressed MOSFET’s. IEEE Trans Electron Devices 43: 605–611

    ADS  Google Scholar 

  47. Fitzgerald DJ, Grove AS (1968) Surface recombination in semiconductors. Surface Science 9: 347–369

    ADS  Google Scholar 

  48. Becker C, Gössling C, Lichau C, Wübben T, Wüstenfeld J, Wunstorf R (2000) Gate-controlled diodes for characterization of the Si-SiO2 interface with respect to surface effects of silicon detectors. Nucl Instrum Methods in Physics Research A 444: 605–613

    ADS  Google Scholar 

  49. Mogro-Campero A, Chang MF, Benjamin JL (1988) Resistance changes in silicon by MeV proton implantation. J Electrochem Soc 135: 172–176

    Google Scholar 

  50. Ntsoenzok E, Barbot JF, Desgardin P, Vernois J, Blanchard C, Isabelle DB (1994) Study of the defects induced in n-type silicon irradiated by 1–3 MeV protons IEEE Trans Nucl Sci 41: 1932–1936

    Google Scholar 

  51. Ntsoenzok E, Desgardin P, Saillard M, Vernois J, Barbot JF (1996) Evolution of shallow donors with proton fluence in n-type silicon. J Appl Phys 79: 8274–8277

    ADS  Google Scholar 

  52. Yamaguchi M, Taylor SJ, Yang M-J, Matsuda S, Kawasaki O, Hisamatsu T (1996) High-energy and high-fluence proton irradiation effects in silicon solar cells. J Appl Phys 80: 4916–4920

    ADS  Google Scholar 

  53. Matsuura H, Uchida Y, Nagai N, Hisamatsu T, Aburaya T, Matsuda S (2000) Temperature dependence of the electron concentration in type-converted silicon by 1x1017 cm−2 fluence irradiation of 1 MeV electrons. Appl Phys Lett 76: 2092–2094

    ADS  Google Scholar 

  54. Keskitalo N, Hallén A (1994) Resistivity profile measurements of proton-irradiated n-type silicon. Solid-State Electron 37: 55–60

    ADS  Google Scholar 

  55. Lemeilleur F, Glaser M, Heijne EHM, Jarron P, Occelli E (1992) Neutron-induced radiation damage in silicon detectors. IEEE Trans Nucl Sci 39: 551–557

    ADS  Google Scholar 

  56. Bates SJ, Dezillie B, Furetta C, Glaser M, Lemeilleur F, León-Florian E (1996) Proton irradiation of various resistivity silicon detectors IEEE Trans Nucl Sci 43: 1002–1008

    Google Scholar 

  57. Li J (1989) Novel semiconductor substrate formed by hydrogen ion implantation into silicon. Appl Phys Lett 55: 2223–2224

    ADS  Google Scholar 

  58. Li J (2000) The new exploration for proton-implanted silicon: the conversion of a surface-region-purification-induced p-n junction into a p-i-n electrical structure approaching silicon-on-insulator. Semicond Sci Technol 15: L6 - L9

    ADS  Google Scholar 

  59. Wu YH, Chin A, Shih KH, Wu CC, Liao CP, Pai SC, Chi CC (2000) Fabrication of very high resistivity Si with low loss and cross talk. IEEE Electron Device Lett 21: 394396

    Google Scholar 

  60. Privitera V, Coffa S, Priolo F, Kyllesbech Larsen K, Mannino G (1996) Room-temperature migration and interaction of ion beam generated defects in crystalline silicon. Appl Phys Lett 68: 3422–3424

    ADS  Google Scholar 

  61. Pease RL, Enlow EW, Dinger GL, Marshall P (1987) Comparison of proton and neutron carrier removal rates. IEEE Trans Nucl Sci 34: 1140–1146

    ADS  Google Scholar 

  62. Gossick BR (1959) Disordered region in semiconductors bombarded by fast neutrons. J Appl Phys 30: 1214–1218

    ADS  Google Scholar 

  63. Brudnyi VN, Gradoboev AV, Peshev VV (1999) The broad midgap deep-level transient spectroscopy band in proton (65 MeV) and fast neutron-irradiated n-GaAs. Phys Stat Sol (b) 212: 229–239

    ADS  Google Scholar 

  64. Fourches N (1995) High defect density regions in neutron irradiated high-purity germanium: Characteristics and formation mechanisms. J Appl Phys 77: 3684–3689

    ADS  Google Scholar 

  65. Bruzzi M, Borchi E, Baldini A (1992) Using thermally stimulated currents to visualize defect clusters in neutron-irradiated silicon. J Appl Phys 72: 4007–4013

    ADS  Google Scholar 

  66. Watts SJ, Matheson J, Hopkins-Bond IH, Holmes-Siedle A, Mohammadzadeh A, Pace R (1996) A new model for generation-recombination in silicon depletion regions after neutron irradiation IEEE Trans Nucl Sci 43: 2587–2594

    Google Scholar 

  67. Gill K, Hall G, MacEvoy B (1997) Bulk damage effects in irradiated silicon detectors due to clustered divacancies. J Appl Phys 82: 126–136

    ADS  Google Scholar 

  68. Schenk A, Krumbein U (1995) Coupled defect-level recombination: Theory and application to anomalous diode characteristics. J Appl Phys 78: 3185–3192

    Google Scholar 

  69. Takarabe K, Landsberg PT, Liakos JK (1997) Recombination statistics involving inter-trap recombination. Semicond Sci Technol 12: 687–691

    ADS  Google Scholar 

  70. Giri PK, Mohapatra YN (2000) Capacitance transient spectroscopy models of coupled trapping kinetics among multiple defect states: Application to the study of trapping kinetics of defects in heavy-ion-damaged silicon. Phys Rev B 62: 2496–2504

    Google Scholar 

  71. Svensson BG, Mohadjeri B, Hallén A, Svensson JH, Corbett JW (1991) Divacancy acceptor levels in ion-irradiated silicon. Phys Rev B 43: 2292–2298

    ADS  Google Scholar 

  72. Amekura H, Kishimoto N, Saito T (1995) Photoconductivity evolution due to carrier trapping by defects in 17 MeV-proton irradiated silicon. J Appl Phys 77: 4984–4992

    ADS  Google Scholar 

  73. Simoen E, Vanhellemont J, Claeys C (1996) Effective generation-recombination parameters in high-energy proton irradiated silicon diodes. Appl Phys Lett 69: 2858–2860

    ADS  Google Scholar 

  74. Markvart T (1990) Review: Radiation damage in solar cells. J Mat Sci Mat Electron 1: 1–12

    Google Scholar 

  75. Schroder DK (1990) Semiconductor Material and Device Characterization. WileyInterscience, New York, Chapter 8

    Google Scholar 

  76. Schroder DK (1997) Carrier lifetimes in silicon. IEEE Trans Electron Devices 44:160–170

    Google Scholar 

  77. Bullis WM, Huff HR (1996) Interpretation of carrier recombination and diffusion length measurements in silicon. J Electrochem Soc 143: 1399–1405

    Google Scholar 

  78. Hallén A, Keskitalo N, Masszi F, Ndgl V (1996) Lifetime in proton irradiated silicon. J Appl Phys 79: 3906–3914

    ADS  Google Scholar 

  79. Simoen E, Vanhellemont J, Claeys C, Kaniava A, Gaubas E (1996) The response of Si p-n junction diodes to proton irradiations. Semicond Sci Technol 11: 1434–1442

    ADS  Google Scholar 

  80. Mogro-Campero A, Love RP, Chang MF, Dyer R (1986) Localized lifetime control in insulated-gate transistors by proton implantation IEEE Trans Electron Devices 33: 1667–1671

    Google Scholar 

  81. Hüppi MW (1990) Proton irradiation of silicon: Complete electrical characterization of the induced recombination centers. J Appl Phys 68: 2702–2707

    ADS  Google Scholar 

  82. Hallén A, Bakowski M, Lundqvist M (1993) Multiple proton energy irradiation for improved GTO thyristors. Solid-State Electron 36: 133–141

    ADS  Google Scholar 

  83. Simoen E, Claeys C, Ohyama H (1998) Factors determining the damage coefficients and the low-frequency noise in MeV proton-irradiated silicon diodes IEEE Trans Nucl Sci 45: 89–97

    Google Scholar 

  84. Watkins GD (1969) A microscopic view of radiation damage in semiconductors using EPR as a probe. IEEE Trans Nucl Sci 16: 13–18

    ADS  Google Scholar 

  85. Lenahan PM, Conley Jr JF (1998) What can electron paramagnetic resonance tell us about the Si/SiO2 system? J Vac Sci Technol B 16: 2134–2153

    Google Scholar 

  86. Henderson B, Pepper M, Vranch RL (1989) Spin-dependent and localisation effects at Si/SiO2 device interfaces. Semicond Sci Technol 4: 1045–1060

    ADS  Google Scholar 

  87. Stathis JH (1996) Electrically detected magnetic resonance study of stress-induced leakage current in thin SiO2. Appl Phys Lett 68: 1669–1671

    ADS  Google Scholar 

  88. Lepine DJ (1972) Spin dependent recombination in silicon surfaces. Phys Rev B 6: 436441

    Google Scholar 

  89. Krick JT, Lenahan PM, Dunn GJ (1991) Direct observation of interfacial point defects generated by channel hot hole injection in n-channel metal oxide silicon field effect transistors. Appl Phys Lett 59: 3437–3439

    ADS  Google Scholar 

  90. Jupina MA, Lenahan PM (1989) A spin dependent recombination study of radiation induced defects at and near the Si/SiO2 interface. IEEE Trans Nucl Sci 36: 1800–1807

    ADS  Google Scholar 

  91. Stathis JH, DiMaria DJ (1992) Identification of an interface defect generated by hot electrons in SiO2. Appl Phys Lett 61: 2887–2889

    ADS  Google Scholar 

  92. Laiho R, Vlasenko LS, Vlasenko MP, Kozlov VA, Kozlovski VV (1999) Electron paramagnetic resonance of radiation defects in hydrogen-implanted silicon detected by spin-dependent microwave photoconductivity. Appl Phys Lett 74: 3948–3950

    ADS  Google Scholar 

  93. Nubile P, Bourgoin JC, Stievenard D, Deresmes D, Strobl G (1992) Defects in low-temperature electron-irradiated p-type silicon. J Appl Phys 72: 2673–2679

    ADS  Google Scholar 

  94. Watkins GD, Troxell JR, Chatterjee AP (1979) Vacancies and interstitials in silicon. Inst Phys Conf Ser No 46:Chapter 1, 16–30

    Google Scholar 

  95. Watkins GD (1999) Vacancies and interstitials and their interactions with other defects in silicon, In: Abe T, Bullis WM, Kobayashi S, Lin W, Wagner P (eds) Proc 3rd Int Symposium on Defects in Silicon. The Electrochem Soc, Pennington, NJ, vol 99–1, pp 38–52

    Google Scholar 

  96. Lenahan PM, Conley Jr JF, Wallace BD (1997) A model for hole trapping in SiO2 films on silicon. J Appl Phys 81: 6822–6824

    ADS  Google Scholar 

  97. Lenahan PM, Mele JJ, Conley Jr JF, Lowry RK, Woodbury D (1999) Predicting radiation response from process parameters: Verification of a physically based predictive model. IEEE Trans Nucl Sci 46: 1534–1543

    Google Scholar 

  98. Lang DV (1974) Deep-level transient spectroscopy: A new method to characterize traps in semiconductors. J Appl Phys 45: 3023–3032

    ADS  Google Scholar 

  99. Benton JL (1990) Characterization of defects in semiconductors by deep level transient spectroscopy. J Cryst Growth 106: 116–126

    ADS  Google Scholar 

  100. Johnson NM, Bartelink DJ, Gold RB, Gibbons JF (1979) Constant-capacitance DLTS measurement of defect-density profiles in semiconductors. J Appl Phys 50: 4828–4833

    ADS  Google Scholar 

  101. Watts, SJ (1998) Radiation induced defects in silicon. In: Claeys CL, Rai-Choudhury P, Watanabe M, Stallhofer P, Dawson HJ (eds) High Purity Silicon V. The Electrochem Soc, Pennington, NJ, vol 98–13, pp 355–370

    Google Scholar 

  102. Markvart T, Parton DP, Peters JW, Willoughby AFW (1994) DLTS of recombination centres in semiconductors. Materials Science Forum 143–147: 1381–1386

    Google Scholar 

  103. Deixler P, Terry J, Hawkins ID, Evans-Freeman JH, Peaker AR, Rubaldo L, Maude DK, Portal J-C, Dobaczewski L, Bonde Nielsen K, Nylandsted Larsen A, Mesh A (1998) Laplace-transform deep-level transient spectroscopy studies of the G4 gold-hydrogen complex in silicon. Appl Phys Lett 73: 3126–3128

    ADS  Google Scholar 

  104. Yao X, Mou J, Qin G (1987) Shifts and splittings of electron energy levels of A centers in silicon under uniaxial stress. Phys Rev B 35: 5734–5739

    ADS  Google Scholar 

  105. Samara GA (1987) Pressure dependence of deep electronic levels in semiconductors: The oxygen-vacancy pair (A centre) in silicon. Phys Rev B 36: 4841–4848

    ADS  Google Scholar 

  106. Achtziger N, Gottschalk H, Licht T, Meier J, Rüb M, Reislöhner U, Witthuhn W (1995) Recoil implantation of radioactive transition metals and their investigation in silicon by deep-level transient spectroscopy. Appl Phys Lett 66: 2370–2372

    ADS  Google Scholar 

  107. Peaker AR, Dobaczewski L, Andersen O, Rubaldo L, Hawkins ID, Bonde Nielsen K, Evans-Freeman JH (2000) Silicon defect characterization by high resolution Laplace Deep Level Transient Spectroscopy. In: Claeys CL, Rai-Choudhury P, Watanabe M, Stallhofer P, Dawson HJ (eds) High Purity Silicon VI, The Electrochem Soc, Pennington, NJ, vol 2000–17, pp 549–560

    Google Scholar 

  108. Goubet JJ, Sherman Christensen J, Mejlholm P, Nylandsted Larsen A (2000) Tin-related deep levels in p-and n-type silicon In: Claeys C (ed) Proc 2nd ENDEASD Workshop, pp 137–142

    Google Scholar 

  109. Watkins GD, Troxell JR (1980) Negative-U properties for point defects in silicon. Phys Rev Lett 44: 593–596

    ADS  Google Scholar 

  110. Mukashev BN, Abdullin KhA, Gorelkinskii YuV (1997) Self-interstitials in irradiated silicon. Materials Science Forum 258–263: 541–546

    Google Scholar 

  111. Brelot A (1971) Tin as a vacancy trap in silicon at room temperature IEEE Trans Nucl Sci 19: 220–226

    Google Scholar 

  112. Brelot A, Charlemagne J (1971) Infrared studies of low temperature electron irradiated silicon containing germanium, oxygen and carbon. Radiation Effects 9: 65–73

    ADS  Google Scholar 

  113. Svensson JH, Svensson BG, Monenar B (1988) Infrared absorption studies of the divacancy in silicon: New properties of the singly negative charge state. Phys Rev B 38: 4192–4197

    Google Scholar 

  114. Ascheron C (1991) Proton beam modification of selected AIIIBv compounds. Phys Stat Sol A 124: 11–55

    ADS  Google Scholar 

  115. Davies G (1989) The optical properties of luminescence centres in silicon. Phys Reports 176: 83–188

    ADS  Google Scholar 

  116. Thonke K, Teschner R, Sauer R (1987) New photoluminescence defect spectra in silicon irradiated at 100 K: Observation of interstitial carbon. Solid State Commun 61: 241–244

    Google Scholar 

  117. Nakamura M, Kitamura E, Misawa Y, Suzuki T, Nagai S, Sunaga H (1994) Photoluminescence measurement of carbon in silicon crystals irradiated with high energy electrons. J Electrochem Soc 141: 3576–3579

    Google Scholar 

  118. Nakamura M, Byrne AS, Kitamura E, Suzuki T, Nagai S, Sunaga H, Aoki Y, Naramoto H (1995) Enhanced photoluminescence detection of oxygen in silicon crystal by formation of carbon-oxygen complex through carbon implantation and electron irradiation. J Appl Phys 78: 4407–4410

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Claeys, C., Simoen, E. (2002). Basic Radiation Damage Mechanisms in Semiconductor Materials and Devices. In: Radiation Effects in Advanced Semiconductor Materials and Devices. Springer Series in Materials Science, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04974-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04974-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07778-4

  • Online ISBN: 978-3-662-04974-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics