Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 57))

Abstract

The amount of radiation that semiconductor devices and materials encounter during their lifecycle strongly depends on the radiation environment and their operating conditions. For space missions and military applications it is obvious that there is a radiation-harsh environment. However, also during their fabrication process and even for standard terrestrial operation the devices may suffer from ionising radiation. Therefore, Sect. 1.2 briefly reviews the different radiation environments and points out the typical particle spectrum that the devices will face. Only some essential features are addressed as whenever needed more details are given in the different chapters. Another important aspect is the trend to use more and more the Custom-Off-The-Shelf (COTS) approach for designing systems to be used in satellite and space programs. This COTS approach, which to some extent was the driving force for writing this book, is treated in Sect. 1.3, dealing with the component selection strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holmes-Siedle A, Adams L (1993) Handbook of radiation effects. Oxford University Press, Oxford

    Google Scholar 

  2. Barth JL (1997) Modeling space radiation environments. Proc 1997 NSREC Short Course, Snowmass

    Google Scholar 

  3. Van Allen JA (1963) Geomagneticically trapped radiation. Space science, John Wiley & Sons, New York

    Google Scholar 

  4. Stassinopoulos EG, Brucker GJ, Nakamura DW, Stauffer CA, Gee GB, Barth JL (1996) Solar flare proton evaluation at geostationary orbits for engineering applications. IEEE Trans Nucl Sci 43: 369–382

    Article  ADS  Google Scholar 

  5. Daly EJ, Lemaire J, Heynderickx D, Rodgers DJ (1996) Problems with models of the radiation belts. IEEE Trans Nucl Sci 43: 403–415

    Article  ADS  Google Scholar 

  6. Dyer CS, Sims AJ, Truscott PR, Farren J, Unterwood C (1992) Radiation environments on shuttle missions using the CREA experiment. IEEE Trans Nucl Sci 39: 1809–1816

    Article  ADS  Google Scholar 

  7. Gussenhoven MS, Mullen EG, Brautigam DH (1996) Improved understanding of the earth’s radiation belts form the CRRES satellite. IEEE Trans Nucl Sci 43: 353–368

    Article  ADS  Google Scholar 

  8. Huston L, Pfitzer KA (1998) A new model for the low altitude trapped proton environment. IEEE Trans Nucl Sci 4: 2972–2978

    Article  ADS  Google Scholar 

  9. Dyer CS, Truscott PR, Sanderson C, Watson C, Peerless CL, Knight P, Mugford R, Cousins T, Noulty R (2000) Radiation environment measurements from CREAM and CREDO during the approach of solar maximum. IEEE Trans Nucl Sci 47: 2208–2217

    Article  ADS  Google Scholar 

  10. Chennete DL, Chen J, Clayton E, Guzik TG, Wefel JP, Garcia-Munoz M, Lapote C, Ray KP, Mullen EG, Hardy DA (1994) The CRRESS/SPACERAD heavy ion model of the environment ( CHIME) for cosmic rays and solar particle effects on electronic and biological systems in space. IEEE Trans Nucl Si 41: 2332–2339

    Article  ADS  Google Scholar 

  11. McKerracher PL, Kinnison JD, Maurer RH (1994) Applying new solar flare particle event models to interplanetary satellite programs. IEEE Trans Nucl Sci 41: 2368–2375

    Article  ADS  Google Scholar 

  12. LaBel KA, Marshall PW, Barth JL, Stassinopoulos EG, Seidleck CM, Dale CJ (1996) Commercial microelectronics technologies for applications in the satellite radiation environment. In Proc 1996 IEEE Aerospace Applications, The IEEE, New York, pp 375–390

    Google Scholar 

  13. Landis GA, Appelbaum J (1990) Design considerations for Mars PV power systems. In Proc 214 IEEE Photovoltaic Specialists Conf. The IEEE, New York, pp 1623–1270

    Google Scholar 

  14. Appelbaum J, Segalov T, Jenkins P, Landis GA, Baraona C (1997) Verification of Mars solar radiation model based on Mars Pathfinder data. In: Proc 26s IEEE Photovoltaic Specialists Conf, The IEEE, New York, pp 1039–1042

    Google Scholar 

  15. Hon. P, Lutz G, Richter RH, Struder L, Longoni A, Sampieto M (2000) In:Proc of the 8th European symposium on semiconductor detectors. Nucl Instr & Methods in Phys Res A 439:199–685

    Google Scholar 

  16. Baumann RC, Smith EB (2000) Neutron-induced boron fission as a major source of soft errors in deep submicron SRAM devices. In: Proc Int Rel Phys Symp, The IEEE, New York, pp 152–157

    Google Scholar 

  17. May TC, Woods MH (1979) Alpha-particle-induced soft errors in dynamic memories. IEEE Trans Electron Devices 26: 2–9

    Article  Google Scholar 

  18. Hsieh CM, Murley PC, O’Brien RR (1991) A field funneling effect on the collection of the alpha-particle-generated carriers in silicon devices. IEEE Electron Device Lett 2: 103–105

    Article  Google Scholar 

  19. Hasnain Z, Ditali A (1992) Building-in reliability: Soft errors— a case study. In: Proc Int Rel Phys Symp, The IEEE, New York, pp 276–280

    Google Scholar 

  20. Baumann R, Hossain T, Murata S, Kitagawa H (1995) Boron compounds as a dominant source of alpha particles in semiconductor devices. In: Proc Int Rel Phys Symp, The IEEE, New York, pp 297–302

    Google Scholar 

  21. Normand E, Baker TJ (1993) Altitude and latitude variations in avionics SEU and atmospheric neutron fluxes. IEEE Trans Nucl Sci 40: 1484–1490

    Article  ADS  Google Scholar 

  22. Takia M, Kishimoto T, Ohno Y, Sayama H, Sonoda K, Satoh S, Nishimura T, Miyoshi H, Kinomura A, Horino Y, Fujii K (1996) Soft error susceptibility and immune structures in dynamic random access memories (DRAMs) investigated by nuclear microprobes. IEEE Trans Nucl Sci 43: 696–704

    Article  ADS  Google Scholar 

  23. Takia M, Arita Y, Abo S, Iwamatsu T, Maegawa S, Sayama H, Yamaguchi Y, Inuishi M, Nishimura T (2001) Evaluation of soft errors in DRAM and SRAM using nuclear microprobe and neutron source. In: Ryssel H, Wachutka G, Grunbacher H (eds) Proc ESSDERC 2001, Editions Frontieres, Paris, pp 17–24

    Google Scholar 

  24. Wolf S, Tauber RN (2000) Silicon processing for the VLSI era. Lattice press. California

    Google Scholar 

  25. Underwood CI, Oldfield MK (2000) Observations on the reliability of COTS-devicebased solid state data recorders operating in low-earth-orbit IEEE Trans Nucl Sci 47: 647–653

    Article  ADS  Google Scholar 

  26. O’Bryan MV, Label KA, Reed RA, Howard Jr JW, Ladbury RL, Barth JL, Kniffin SD, Seidleck CM, Marshall PW, Marshal CJ, Kim HS, Hawkins DK, Sanders AB, Carts MA, Forney JD, Roth DR, Kinnison JD, Nhan E, Sahu K (2000) Radiation damage and single event results for candidate spacecraft electronics. In: Proc Rad Effects Data Workshop, The IEEE, New York, pp 106–122

    Google Scholar 

  27. LaBel KA, Barnes CE, Marshall PW, Marshall CJ, Johnston AH, Reed RA, Barth JL, Seidleck CM, Kayali SA, O’Bryan MV (2000) A roadmap for NASA’s radiation effect research in emerging microelectronics and photonics. In: Proc IEEE Aerospace Conf, The IEEE, New York, pp 535–545

    Google Scholar 

  28. www.estec.esa.nl/qcswww/tos_qca/

    Google Scholar 

  29. International Technology Roadmap for Semiconductors, 2001 Edition. www.itrs.net/2001_SIA_Roadmap/Home.html

    Google Scholar 

  30. Anelli G, Campbell M, Delmastro M, Faccio F, Florian S, Giraldo A, Heyne E, Jarron P, Kloukinas K, Marchioro A, Moreira P, Snoeys W (1999) Radiation-tolerant VLSI circuits in standard deep sub micron CMOS technologies for the LHC experiment: Practical design aspects. IEEE Trans Nucl Sci 46: 1690–169

    Article  ADS  Google Scholar 

  31. Lacoe RC, Osborn JV, Koga R, Brown S, Mayer DC (2000) Application of hardnessby-design methodologies to radiation-tolerant ASIC technologies IEEE Trans Nucl Sci 47: 2334–2341

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Claeys, C., Simoen, E. (2002). Radiation Environments and Component Selection Strategy. In: Radiation Effects in Advanced Semiconductor Materials and Devices. Springer Series in Materials Science, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04974-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04974-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07778-4

  • Online ISBN: 978-3-662-04974-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics