Tracing Climate-Variability: The Search for Climate Dynamics on Decadal to Millennial Time Scales

  • Michael Schulz
  • Wolfgang H. Berger
  • Michael Baillie
  • Jürg Luterbacher
  • Jens Meincke
  • Jörg F. W. Negendank
  • Andre Paul
  • René O. Ramseier
Chapter

Abstract

Prognoses regarding future climate scenarios hinge on the predictive skills of climate models. They must produce reliable estimates of the future mean climate state as well as future climate variability about the mean, resulting from the interference between natural climate variability and anthropogenic perturbations of the climate system. Natural climate variability originates from interactions between components of the climate systems and from perturbations external to the climate system. To validate model-generated climate variability against the whole range of natural variability, it is necessary to gather information on the temporal progression of Holocene climate variability. Distinct spatial climate regimes (climate-variability patterns) can be extracted from climate observations and facilitate the comparison between paleoclimate reconstructions and model results. Examples of instrumental observations and proxy data demonstrate the potential of such records to trace climate regimes through time. The dominant mode of today’s climate variability in Europe — the North Atlantic Oscillation — constitutes a climate regime, that can serve to provide an expectation in assessing Holocene climate variability. First attempts to reconstruct the history of the North Atlantic Oscillation during the last 300 years or so are summarized. Volcanic eruptions and solar variability constitute important external perturbations of the climate system that account for a significant portion of natural variability.

Keywords

Dust Convection Depression Europe Ozone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson RY, Dean WE (1988) Lacustrine varve formation through time. Palaeogeogr, Palaeoclimatol, Palaeoecol 62:215 – 23CrossRefGoogle Scholar
  2. Appenzeller C, Stocker TF, Anklin M(1998) North Atlantic oscillation dynamics recorded in Greenland ice cores. Science 282:446–449CrossRefGoogle Scholar
  3. Bailey ME, Clube SVM, Napier WM (1990) The Origin of Comets. Pergamon Press, LondonGoogle Scholar
  4. Baillie MGL (1994) Dendrochronology raise questions about the nature of the AD 536 dust-veil event. Holocene 4:212–217CrossRefGoogle Scholar
  5. Baillie MGL (1998) Evidence for climatic deterioration in the 12th and 17th centuries BC. In: Hänsel B (ed) The Bronze Age: the first golden age of Europe. Oetker-Voges Verlag, Kiel, 49–56Google Scholar
  6. Baillie MGL (1999) A view from outside: Recognising the big picture. Quat Proc 7:625–635Google Scholar
  7. Barnett T, Preisendorfer R (1987) Origins and levels of monthly and seasonal forecasts skill for United States surface air temperature determined by canonical correlation analysis. Mon Wea Rev 115:1825–1850CrossRefGoogle Scholar
  8. Bhattacharya K, Ghil M, Vulis IL (1982) Internal variability of an energy-balance model with delayed albedo effects. J Atmos Sci 39:1747–1773CrossRefGoogle Scholar
  9. Bjerknes J (1964) Atlantic air-sea interaction. Adv Geophys 10:1–82CrossRefGoogle Scholar
  10. Black DE, Peterson LC, Overpeck JT, Kaplan A, Evans MN, Kashgarian M (1999) Eight centuries of North Atlantic ocean atmosphere variability. Science 286:1709–1713CrossRefGoogle Scholar
  11. Brathauer U, Brauer A, Negendank JFW, Zolitschka B (2000) Rasche Klimaänderungen am Beginn der heutigen Warmzeit. Zweijahresbericht GeoForschungsZentrum Potsdam 1998/1999, pp 29–33Google Scholar
  12. Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlén W, Zetterberg P, Eronen M (1992) Fennoscandian summers from AD 500: temperature changes on short and long timescales. Clim Dyn 7:111–119CrossRefGoogle Scholar
  13. Briffa KR, Jones PD, Schweingruber FH, Osborn TJ (1998) Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 6000 years. Nature 393:450–455CrossRefGoogle Scholar
  14. Cayan DR (1992) Latent and sensible heat flux anomalies over the northern oceans: the connection to monthly atmospheric circulation. J Climate 5:354–369CrossRefGoogle Scholar
  15. Cook ER, D’Arrigo RD, Briffa KR (1998) A reconstruction of the North Atlantic Oscillation using tree-ring chronologies from North America and Europe. The Holocene 8:9–17CrossRefGoogle Scholar
  16. Covey C, Thompson SL, Weissman PR, MacCracken MC (1994) Global climatic effects of atmospheric dust from an asteroid or comet impact on Earth. Glob Planet Change 9:263–273CrossRefGoogle Scholar
  17. Crowley TJ, Kim KY (1999) Modeling the temperature response to forced climate change over the last six centuries. Geophys Res Lett 26:1901–1904CrossRefGoogle Scholar
  18. Cubasch U, Voss R, Hegerl GC, Waszkewitz J, Crowley TJ (1997) Simulation of the influence of solar radiation variations on the global climate with an oceanatmosphere general circulation model. Clim Dyn 13:757–767CrossRefGoogle Scholar
  19. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  20. De Silva SL, Zielinski GA (1998) Global influence of the AD 1600 eruption of Huaynaputina. Peru. Nature 393:455–458CrossRefGoogle Scholar
  21. Fischer G, Wefer G (eds) (1999) Use of proxies in paleoceanography. Springer Verlag, Berlin, pp 1–735CrossRefGoogle Scholar
  22. Foster G (1996) Wavelets for period analysis of unevenly sampled time series. Astron J 112:1709–1729CrossRefGoogle Scholar
  23. Frankignoul C, Müller P, Zorita E (1997) A simple model of the decadal response of the ocean to stochastic wind forcing. J Phys Oceanogr 27:1533–1546CrossRefGoogle Scholar
  24. Free M, Robock A (1999) Global warming in the context ofthe Little Ice Age. J Geophys Res D 104:19057–19070CrossRefGoogle Scholar
  25. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  26. Ghil M (1994) Cryothermodynamics: The chaotic dynamics of paleoclimate. Physica D 77:130–159CrossRefGoogle Scholar
  27. Ghil M, Yiou P (1996) Spectral methods: what they can and cannot do for climatic time series. In: Anderson DLT, Willebrand J (eds) Decadal climate variability — dynamics and predictability. Springer Verlag, Berlin, 445–482Google Scholar
  28. Groetzner A, Latif M, Barnett TP (1998) A decadal cycle in the North Atlantic as simulated by the ECHO coupled GCM. J Climate 11: 831–847CrossRefGoogle Scholar
  29. Haigh JD (1996) The impact of solar variability on climate. Science 272:981–984CrossRefGoogle Scholar
  30. Hartmann DL (1994) Global physical climatology. Academic Press, San DiegoGoogle Scholar
  31. Hasselmann K (1976) Stochastic climate models: Part I. Theory. Tellus 28:473–485CrossRefGoogle Scholar
  32. Horowitz LL (1974) The effects of spline interpolation on power spectral density. IEEE Trans Acoust, Speech, Signal Processing ASSP-22:22–27CrossRefGoogle Scholar
  33. Houghton JT, Meira Filho Callander BA, Harris N, Kattenberg A, Maskell K (eds) (1996) Climate Change 1995 — The science of climate change. Cambridge University Press, CambridgeGoogle Scholar
  34. Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  35. Hurrell JW (1996) Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys Res Lett 23:665–668CrossRefGoogle Scholar
  36. Jönsson P, Fortuniak K (1995) Interdecadal variations of surface wind direction in Lund, Southern Sweden. Int J Clim 15:447–461CrossRefGoogle Scholar
  37. Jones PD, Hulme M (1997) The changing temperature of ‘Central England’. In: Hulme M, Barrow E (eds) Climates of the British Isles, present, past and future. Routledge, London, 453Google Scholar
  38. Jones PD, Jónsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int J Clim 17:1433–1450CrossRefGoogle Scholar
  39. Jouzel J, Alley RB, Cuffey KM, Dansgaard W, Grootes P, Hoffmann Johnsen SJ, Koster RD, Peel D, Shuman CA, Stievenard M, Stuiver M, White J(1997) Validity of the temperature reconstruction from water isotopes in ice cores. J Geophys Res C102:26471–26487CrossRefGoogle Scholar
  40. Keigwin LD, Pickart RS (1999) Slope water current over the Laurentian fan on interannual to millennial time scales. Science 286:520–523CrossRefGoogle Scholar
  41. Koslowski Glaser R(1999) Variations in reconstructed ice winter severity in the Western Baltic from 1501 to 1995, and their implications for the North Atlantic Oscillation. Climatic Change 41:175–191CrossRefGoogle Scholar
  42. Kushnir Y (1994) Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J Climate 7:142–157CrossRefGoogle Scholar
  43. Latif M, Barnett TP (1994) Causes of decadal climate variability over the North Pacific and North America. Science 266:634–637CrossRefGoogle Scholar
  44. Lau K-M, Weng H (1995) Climate signal detection using wavelet transform: how to make a time series sing. Bull Amer Met Soc 76:2391–2402CrossRefGoogle Scholar
  45. Legrand JP, Le Goff M (1992) Direction de la Météorologie Nationale, Monographie Nr. 6: Les observations météorologiques de Louis Morin entre 1670 et 1713’. Météo-France, TrappesGoogle Scholar
  46. Le Treut H, Ghil M (1983) Orbital forcing, climatic interactions, and glaciation cycles. J Geophys Res C88:5167–5190CrossRefGoogle Scholar
  47. Lindzen RS (1995) Constraining possibilities versus signal detection. In: National Research Council (ed) Natural climate variability on decade-to-centennial time scales. National Academy Press, Washington, D.C., 182–186Google Scholar
  48. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141CrossRefGoogle Scholar
  49. Loutre MF, Berger A, Bretagnon P, Blanc P-L (1992) Astronomical frequencies for climate research at the decadal to century time scale. Clim Dyn 7:181–194CrossRefGoogle Scholar
  50. Luterbacher J, Schmutz C, Gyalistras D, Xoplaki E, Wanner E (1999) Reconstruction of monthly NAO and EU indices back to AD 1675. Geophys Res Lett 26:2745–2748CrossRefGoogle Scholar
  51. Luterbacher J and 33 others (2000) Reconstruction of monthly mean sea level pressure over Europe for the Late Maunder Minimum period (1675–1715) based on canonical correlation analysis. Int J ClimGoogle Scholar
  52. Manley G (1974) Central England temperatures: monthly means 1659 to 1973. Quart J Roy Met Soc 100:389–405CrossRefGoogle Scholar
  53. Mitchell JFB, Johns TC, Gregory JM, Tett SFB (1995) Climate response to increasing levels of greenhouse gases and sulphate arrosols. Nature 376:501–504CrossRefGoogle Scholar
  54. Mysak LA, Venegas SA (1998) Decadal climate oscillations in the Arctic: Anew feedback loop for atmosphere-ice-ocean interactions. Geophys Res Lett 25:3607–3610CrossRefGoogle Scholar
  55. Negendank JFW, Zolitschka B, Rein B, Brauer A, Brüchmann C, Sanchez A, Vos H (1999) Varves and solar variability (Lake Holzmaar, Eifel, Germany). Bulletin de la Société belge de Géologie 106 (1997): 53–61Google Scholar
  56. Namias J (1981) Teleconnections of 700-mb height anomalies for the Northern Hemisphere. In: Fleminger, A (ed) CalCOFI Atlas No. 29, Marine Life Research Program, Scripps Institution of OceanographyGoogle Scholar
  57. Nozaki Y, Rye DM, Turekian KK, Dodge RE (1978)13C and 14C variations in a Bermuda coral. Geophys Res Lett 5:825–828CrossRefGoogle Scholar
  58. Osborn, TJ, Briffa KR, Tett SFB, Jones PD, Trigo RM (1999) Evaluation of the North Atlantic Oscillation as simulated by a coupled climate model. Clim Dyn 15:685–702CrossRefGoogle Scholar
  59. Parker DE, Legg TP, Folland CK (1992) A new daily Central England Temperature series, 1772–1991. Int J Clim 12:317–342CrossRefGoogle Scholar
  60. Parkonson CL, Cavalieri DJ, Gloersen P, Zwally HJ, Comiso JC (1999) Arctic sea ice extents, areas, and trends, 1978–1996. J Geophys Res 104:20837–20856CrossRefGoogle Scholar
  61. Peterson TC, Vose RS (1997) An overview of the global historical climatology network temperature database. Bull Amer Met Soc 78:2837–2850CrossRefGoogle Scholar
  62. Pyle DM (1998) How did the summer go? Nature 393:415–416CrossRefGoogle Scholar
  63. Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12:799–811CrossRefGoogle Scholar
  64. Rogers JC (1989) Patterns of low-frequency monthly sealevel pressure variability (1899–1986) and associated wave cyclone frequencies. J Climate 3:1364–1379CrossRefGoogle Scholar
  65. Schimel D and 26 others (1996) Radiative forcing of climate change. In: Houghton JT et al (ed) Climate Change 1995. Cambridge Univ. Press, Cambridge, 65–131Google Scholar
  66. Schulz M, Berger WHB, Sarnthein M, Grootes PM (1999) Amplitude variations of 1470-year climate oscil-lations during the last 100,000 years linked to fluctuations of continental ice mass. Geophys Res Lett 26:3385–3388CrossRefGoogle Scholar
  67. Seina A, Palosuo E (1996) The classification ofthe maximum annual extent of sea ice cover in the Baltic Sea 1720–1995. Meri-Report series of the Finnish Institute of Marine Resarch 27:79–81Google Scholar
  68. Shindell D, Rind D, Balachandran N, Lean J, Loonergan P(1999) Solar cycle variability, ozone, and climate. Science 284:305–308CrossRefGoogle Scholar
  69. Stuiver M, Grootes PM (2000) GISP2 oxygen isotope ratios. Quat Res 53: 277–284CrossRefGoogle Scholar
  70. Stuiver M, Grootes PM, Braziunas TF (1995) The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean and volcanoes. Quat Res 44:341–354CrossRefGoogle Scholar
  71. Stuiver M, Braziunas TF, Grootes PM, Zielinski GA (1997) Is there evidence for solar forcing of climate in the GISP2 oxygen isotope record? Quat Res 48:259–266CrossRefGoogle Scholar
  72. Timmermann A, Latif M, Voss R, Groetzner A (1998) Northern Hemisphere interdecadal variability: a cou- pled air-sea mode. J Climate 11:1906–1931CrossRefGoogle Scholar
  73. Torrence C, Compo GP (1998) A practical guide to wavelets. Bull Amer Met Soc 79:61–78CrossRefGoogle Scholar
  74. Vautard R, Ghil M(1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleo- climatic time series. Physica D 35:395–424CrossRefGoogle Scholar
  75. Von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge Univ. Press, CambridgeGoogle Scholar
  76. Zolitschka B (1998) Paläoklimatische Bedeutung laminierter Sedimente. Gebr. Borntraeger, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Michael Schulz
    • 1
  • Wolfgang H. Berger
    • 2
  • Michael Baillie
    • 3
  • Jürg Luterbacher
    • 4
  • Jens Meincke
    • 5
  • Jörg F. W. Negendank
    • 6
  • Andre Paul
    • 2
  • René O. Ramseier
    • 7
  1. 1.Institute for GeosciencesUniversity of KielKielGermany
  2. 2.Scripps Institution of OceanographyLa JollaUSA
  3. 3.School of Archaeology and PalaeoecologyQueen’s University of BelfastUK-BelfastNorthern Ireland
  4. 4.Institute of GeographyUniversity of BerneBernSwitzerland
  5. 5.Institute of OceanographyUniversity of HamburgHamburgGermany
  6. 6.GeoForschungsZentrum PotsdamTelegrafenberg, PotsdamGermany
  7. 7.Microwave Group-Ottawa River, Inc.OntarioCanada

Personalised recommendations