Three-Dimensional Calculation of Photolysis Frequencies in the Presence of Clouds

  • A.-L. Brasseur
  • R. Ramaroson
  • A. Delannoy
  • W. Skamarock
  • M. Barth
Chapter

Abstract

The photodissociation of tropospheric chemical species depends on the available solar flux reaching the troposphere. The propagation of sunlight deeper in the atmosphere is affected by various physical processes such as the multiple scattering. The actinic flux distribution is highly affected by the presence of clouds reflecting and diffusing the incoming solar flux inhomogeneously throughout the troposphere. In this paper, we explore the effects of a cumulonimbus cloud on the 3-D distribution of the spectral actinic flux and of various chemical species photolysis frequency. The simulation is based on a 3-D resolution of the UV-VIS radiative transfer equation solved by the Spherical Harmonic Discrete Ordinary Method (SHDOM). The solver (SHDOM) uses as input the 3-D cloud characteristics simulated by a dynamical cloud model (COMMAS). Results show that the distribution of the actinic flux overall the cloud domain is far from homogeneous and depends mainly on the cloud extinction correspondind to each type of hydrometeors. The actinic flux is enhanced by more than a factor 2 to maximum 5, above at the top edge and around the cloud when compared to a clear sky. In a second step, the 3-D actinic flux issued from this simulation is used to calculate the photolysis rates of some chemical speicies (e.g. N02, 03 and HCHO). Results show that the photolysis rates are as well distributed inhomogeneously throughout the cloud, maximums are calculated in regions where the actinic flux is largely enhanced. In a final step, the potential importance of this photolysis enhancement on the chemistry is studied using a box model simulation. Results show that a large OH concentration is calculated in the upper troposphere (120–200 %) over the cloud and a non negligible change in ozone production rate (+ 15%) is obtained on a “steady state condition”.

Keywords

Convection Europe Ozone Hydrocarbon Carbon Monoxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson R., Baulch D.L., Cox R.A., Hampson R.F., Kerr J.A. and Troe J., 1992: Kinetic and photochemical data for atmospheric chemistry. Journal Physical Chemical Reference Data, 21, 6, 1148–1315.Google Scholar
  2. Chandrasekhar, S., 1960: Radiative Transfer, 1–4, Dover, New York.Google Scholar
  3. Crawford J., Davis D., Chen G., Shetter R., Müller M., Barrick J. and Olson J., 1999: An assessment of cloud effects on photolysis rate coefficients : comparison of experimental and theoretical values. J. Geophys. Res., 104, 5725–5734.CrossRefGoogle Scholar
  4. De More W.B., Sander S.P., Golden D.M., Hampson R.F., Kurylo M.J., Howard C.J., Ravishankara A.R., Kolb CE. and Molina M.J., 1997: Chemical kinetics and photochemical data for use in stratospheric modeling. JPL publication97–4, Evaluation n°12.Google Scholar
  5. Derwent, R.G., M.E. Jenkin, S.M. Saunders and M.J. Pilling., 1998: Photochemical ozone creation potentials for organic compounds in northwest Europe calculated with a master chemical mechanism (MCM): Atmos. Environ., 32, 2429.CrossRefGoogle Scholar
  6. Evans, K. F., 1998: The spherical armonics discrete ordinate method for three-dimensional atmospheric radiative transfer,J. Atmos. Sei., 55, 429–446.CrossRefGoogle Scholar
  7. Josefsson W. and Landelius T., 2000: Effect of clouds on UV irradiance : as estimated from cloud amount, cloud type, precipitation, global radiation and sunshine duration. J. Geophys. Res., 105, 4927–4935.CrossRefGoogle Scholar
  8. Kelley, P., R. R. Dickerson, W. T. Luke and G. L. Kok., 1995: Rate of N02 photolysis from the surface to 7.6 km altitude in clear-sky and clouds. Geophys. Res. Lett., 22, 19, 2621–2624.CrossRefGoogle Scholar
  9. Los A., van Weele M. and Duynkerke P.G., 1997: Actinic fluxes in broken cloud fields. J. Geophys. Res., 102, 4257–4266.CrossRefGoogle Scholar
  10. Matthijsen J., Slaper H. and Reinen H.A.M., 2000: Reduction of solar UV by clouds : a comparison between satellite-derived cloud effects and ground-based radiation measurements. J. Geophys. Res., 105, 5069–5080.CrossRefGoogle Scholar
  11. Raisänen P, 1999: Effect of vertical resolution on cloud-sky radiation calculations : Tests with two schemes. J. Geophys. Res., 104, 27407–27419.CrossRefGoogle Scholar
  12. Ramaroson, R., 1992: A box model for on-line computations of diurnal variations in multidimensional models : Application to the one-dimensional case. Ann. Geophys., 10, 416–428.Google Scholar
  13. Shetter R.E. and Müller M., 1999: Photolysis frequency measurements using actinic flux spectroradiometry during the PEM-Tropics mission : Instrumentation description and some results. J. Geophys. Res., 104, 5647–5661.CrossRefGoogle Scholar
  14. Skamarock, W.C., Powers J.G., Barth M., Dye J.E., Matejka T., Bartels D., Baumann K., Stith J., Parrish D.D. and Hubler G., 2000: Numerical Simulations of the 10 July STERAO/Deep Convection Experiment Convective System : Kinematics and Transport, submitted to the Journal of Geophysical research.Google Scholar
  15. Tao W-K, and J. Simpson , 1993: Goddard Cumulus Ensemble Model. Part 1: Model Description. TAO, 4, 35–72.Google Scholar
  16. Trautmann T., Podgorny I., Landgraf J. and Crutzen P.J., 1999: Actinic fluxes and photodissociation coefficients in cloud fields embedded in realistic atmospheres. J. Geophys. Res., 104, 30173–30192.CrossRefGoogle Scholar
  17. Turco, R. P., 1975: Photodissociation rates in the atmosphere below 1000 km. Geophys. Surv., 2, 153–192.CrossRefGoogle Scholar
  18. Valero F.P.J, and Bush B.C., 1999: Measured and calculated clear-sky solar radiative fluxes during the subsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS:. J. Geophys. Res., 104, 27387–27398.CrossRefGoogle Scholar
  19. Wicker, L.J. and R.B. Wilhelmson , 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sei., 52, 2675–2703.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • A.-L. Brasseur
    • 1
  • R. Ramaroson
    • 1
  • A. Delannoy
    • 1
  • W. Skamarock
    • 2
  • M. Barth
    • 2
  1. 1.ONERA - DMPH/EAGChâtillonFrance
  2. 2.NCAR/MMMBoulderUSA

Personalised recommendations