Skip to main content
  • 141 Accesses

Abstract

Parmenides said that what cannot be thought, cannot be, therefore, what can be, can be thought. So it was that ancient Greek philosophers had thought of the atoms and particularly the radioactive atoms we use in Nuclear Medicine. Indeed, Democritos, in the sixth century BC, formulated the idea of atoms as the indestructible smaller elements of the universe that combine among themselves to form the visible world; he thought of atoms on a philosophical basis as the explanation of the changes in the environment which occur without the perishing of matter. Rearrangements of atoms could explain the changes around us and inside us. Two centuries later, Epicuros, as if anticipating the discovery of radioactive atoms, introduced the idea of the “unstable” atom, which, after a period of instability, takes its final stable form. More than 2,000 years later, when science overtook these frontiers, John Dalton knew Democritos’ Atomic Theory of Matter and used it to explain chemical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sfakianakis GN, Mallin W (1999) Scintigraphic neuroimaging in paediatrics. In: Panteliadis C, Darris B (eds) Encyclopedia of pediatric neurology theory and practice, 2nd edn. Thessaloniki, Greece, pp 164–195

    Google Scholar 

  2. Hustinx R, Alavi A (1999) SPECT and PET imaging of brain tumors. Neuroimaging Clin North Am 9: 751–766

    CAS  Google Scholar 

  3. Alavi JB, Alavi A, Chawluk J et al (1988) Positron emission tomography in patients with glioma: a predictor of prognosis. Cancer 62:1074–1078

    Article  PubMed  CAS  Google Scholar 

  4. Ancri D, Basset IY, Lonchampt MF et al (1978) Diagnosis of cerebral lesions by thallium 201. Radiology 128: 417–422

    PubMed  CAS  Google Scholar 

  5. Black KL, Hawkins RA, Kim KT et al (1989) Use of Thallium201 SPECT to quantitate malignancy grade of gliomas. J Neurosurg 71: 342–346

    Article  PubMed  CAS  Google Scholar 

  6. Dierckx RA, Martin II, Dobbeleir A et al (1994) Sensitivity and specificity of thallium-201 single-photon emission tomography in the functional detection and differential diagnosis of brain tumours. Eur J Nucl Med 21: 621–633.

    Article  PubMed  CAS  Google Scholar 

  7. Kaplan WD, Takvorian T, Morris JH et al (1987) Thallium201 brain tumor imaging: a comparative study with pathologic correlation. J Nucl Med 28: 47–52

    PubMed  CAS  Google Scholar 

  8. Ishibashi M, Taguchi A, Sugita Y et al (1995) Thallium-201 in brain tumors: relationship between tumor cell activity in astrocytic tumor and proliferating cell nuclear antigen. J Nucl Med 36: 2201–2206

    PubMed  CAS  Google Scholar 

  9. Oriuchi N, Tamura M, Shibazaki T et al (1993) Clinical evaluation of thallium-201 SPECT in supratentorial gliomas: relationship to histologic grade, prognosis and proliferative activities (see comments). J Nucl Med 34: 2085–2089

    PubMed  CAS  Google Scholar 

  10. Kallen K, Heiling M, Andersson AM et al (1997) Evaluation of malignancy in ring enhancing brain lesions on CT by thallium-201 SPECT. J Neurol Neurosurg Psychiatry 63: 569–574

    Article  PubMed  CAS  Google Scholar 

  11. Yoshii Y, Satou M, Yamamoto T et al (1993) The role of thallium-201 single photon emission tomography in the investigation and characterisation of brain tumours in man and their response to treatment. Eur J Nucl Med 20: 39–45

    Article  PubMed  CAS  Google Scholar 

  12. Hirano T, Otake H, Kazama K et al (1997) Technetium-99 m (V)-DMSA and thallium-201 in brain tumor imaging: correlation with histology and malignant grade. J Nucl Med 38: 1741–1749

    PubMed  CAS  Google Scholar 

  13. Zingale A, Musumeci S, Nicoletti G et al (1995) Thallium201-SPECT and 99Tc-HM-PAO SPECT imaging to study functionally cerebral supratentorial neoplasms: the biological basis of the functional imaging interpretation. J Neurosurg Sci 39: 227–235

    PubMed  CAS  Google Scholar 

  14. Rollins NK, Lowry PA, Shapiro KN (1995) Comparison of gadolinium-enhanced MR and Thallium-201 single photon emission computed tomography in pediatric brain tumors. Pediatr Neurosurg 22: 8–14

    Article  PubMed  CAS  Google Scholar 

  15. Maria BL, Drane WB, Quisling R et al (1997) Correlation between gadolinium-diethylenetriaminepentaacetic acid contrast enhancement and thallium-201 chloride uptake in pediatric brainstem glioma. J Child Neurol 12: 341–348

    Article  PubMed  CAS  Google Scholar 

  16. Bagni B, Pinna L, Tamarozzi R et al (1995) SPECT imaging of intracranial tumours with 99Tcm-sestamibi. Nucl Med Commun 16: 258–264

    Article  PubMed  CAS  Google Scholar 

  17. Beauchesne P, Soler C, Maatougui K et al (1998) Is cerebral tomoscintigraphy with 99mTc-MIBI useful in the diagnosis of local recurrence in patients with malignant gliomas? Cancer Radiother 2: 42–48

    Article  PubMed  CAS  Google Scholar 

  18. Maffioli L, Gasparini M, Chiti A et al (1996) Clinical role of Technetium-99 m Sestamibi single-photon emission tomography in evaluating pretreated patients with brain tumours. Eur J Nucl Med 23: 308–311

    Article  PubMed  CAS  Google Scholar 

  19. O’Tuama LA, Treves ST, Larar IN et al (1993) Thallium-201 versus technetium-99m-MIBI SPECT in evaluation of childhood brain tumors: a within-subject comparison. J Nucl Med 34: 1045–1051

    PubMed  Google Scholar 

  20. Shih JW, Kadzielawa K, Lee C et al (1993) Tc-99 m Sestamibi uptake by cerebellar metastasis from bronchogenic carcinoma (see comments). Clin Nucl Med 18: 887–890

    Article  PubMed  CAS  Google Scholar 

  21. Kuwert T, Morgenroth C, Woesler B et al (1996) Uptake of iodine-123-alpha-methyl tyrosine by gliomas and nonneoplastic brain lesions. Eur J Nucl Med 23: 1345–1353

    Article  PubMed  CAS  Google Scholar 

  22. Tjuvajev JG, Macapinlac HA, Daghighian F et al (1994) Imaging of brain tumor proliferative activity with iodine131-iododeoxyuridine. J Nucl Med 35: 1407–1417

    PubMed  CAS  Google Scholar 

  23. Kassis AI, Van den Abbeele AD, Wen PY et al (1990) 5 specific uptake of the auger electron-emitting thymidine analogue 5-[123I/125I] iodo-2’-deoxyuridine in rat brain tumors: diagnostic and therapeutic implications in humans. Cancer Res 50: 5199–5203

    PubMed  CAS  Google Scholar 

  24. Delbeke D, Meyerowitz C, Lapidus RL et al (1995) Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 195: 47–52

    PubMed  CAS  Google Scholar 

  25. Di Chiro G, Hatazawa I, Katz DA et al (1987) Glucose utilization by intracranial meningiomas as an index of tumor aggressivity and probability of recurrence: a PET study. Radiology 164: 521–526

    PubMed  Google Scholar 

  26. Di Chiro G, DeLaPaz RL, Brooks RA et al (1982) Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 32: 1323–1329

    Article  PubMed  Google Scholar 

  27. Kaschten B, Stevenaert A, Sadzot B et al (1998) Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 39: 778–785

    PubMed  CAS  Google Scholar 

  28. Patronas NJ, Brooks RA, DeLaPaz RL et al (1983) Glycolytic rate (PET) and contrast enhancement (CT) in human cerebral gliomas. AJNR Am J Neuroradiol 4: 533–535

    PubMed  CAS  Google Scholar 

  29. Tyler JL, Diksic M, Villemure JG et al (1987) Metabolic and hemodynamic evaluation of gliomas using positron emission tomography. J Nucl Med 28: 1123–1133

    PubMed  CAS  Google Scholar 

  30. Oriuchi N, Tomiyoshi K, Inoue T et al (1996) Independent thallium-201 accumulation and fluorine-18-fluorodeoxy-glucose metabolism in glioma. J Nucl Med 37: 457–462

    PubMed  CAS  Google Scholar 

  31. Buchpiguel CA, Alavi IB, Alavi A et al (1995) PET versus SPECT in distinguishing radiation necrosis from tumor recurrence in the brain (clinical conference). J Nucl Med 36: 159–164

    PubMed  CAS  Google Scholar 

  32. Tamura M, Shibasaki T, Zama A et al (1998) Assessment of malignancy of glioma by positron emission tomography with 18F-fluorodeoxyglucose and single photon emission computed tomography with thallium-201 chloride. Neuroradiology 40: 210–215

    Article  PubMed  CAS  Google Scholar 

  33. Kincaid PK, El-Saden SM, Park SH et al (1998) Cerebral gangliogliomas: preoperative grading using FDG-PET and 201 Tl-SPECT. AJNR Am J Neuroradiol 119: 801–806

    Google Scholar 

  34. Fulham MI, Melisi IW, Nishimiya I et al (1993) Neuroimaging of juvenile pilocytic astrocytomas: an enigma (see comments). Radiology 189: 221–225

    PubMed  CAS  Google Scholar 

  35. Rosenfeld SS, Hoffman IM, Coleman RE et al (1992) Studies of primary central nervous system lymphoma with fluorine18-fluorodeoxyglucose positron emission tomography. J Nucl Med 33: 532–536

    PubMed  CAS  Google Scholar 

  36. Roelcke U (1994) PET: Brain tumor biochemistry. J Neuroonco 122: 275–279

    Article  Google Scholar 

  37. Roelcke U, Radu E, Ametamey S et al (1996) Association of rubidium and C-methionine uptake in brain tumors measured by positron emission tomography. J Neurooncol 27: 163–171

    Article  PubMed  CAS  Google Scholar 

  38. Roelcke U, Radu EW, von Ammon K et al (1995) Alteration of blood-brain barrier in human brain tumors: comparison of [18F]fluorodeoxyglucose, [1IC]methionine and rubidium82 using PET. J Neural Sci 132: 20–27

    Article  CAS  Google Scholar 

  39. Wienhard K, Herholz K, Coenen HH et al (1991) Increased amino acid transport into brain tumors measured by PET of L-(2–18F) fluorotyrosine (see comments). J Nucl Med 32: 1338–1346

    PubMed  CAS  Google Scholar 

  40. Ericson K, Blomqvist G, Bergstrom M et al (1987) Application of a kinetic model on the methionine accumulation in intracranial tumours studied with positron emission tomography. Acta Radiol 28: 505–509

    Article  PubMed  CAS  Google Scholar 

  41. Ericson K, Lilja A, Bergstrom M et al (1985) Positron emission tomography with ([11 C] methyl)-L-methionine, [11 C] — D-glucose, and [68 Ga]EDTA in supratentorial tumors. J Comput Assist Tomogr 9: 683–689

    Article  PubMed  CAS  Google Scholar 

  42. Hatazawa I, Ishiwata K, Itoh M et al (1989) Quantitative evaluation of L- [methyl-C-11] methionine uptake in tumor using positron emission tomography. J Nucl Med 30: 1809–1813

    PubMed  CAS  Google Scholar 

  43. Ishiwata K, Kubota K, Murakami M et al (1993) Re-evaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measured in vivo? J Nucl Med 34: 1936–1943

    PubMed  CAS  Google Scholar 

  44. De Witte O, Hildebrand I, Luxen A et al (1994) Acute effect of carmustine on glucose metabolism in brain and glioblastoma. Cancer 74: 2836–2842

    Article  PubMed  Google Scholar 

  45. Ogawa T, Shishide F, Kanno I et al (1993) Cerebral glioma: evaluation with methionine PET (see comments). Radiology 186: 45–53

    PubMed  CAS  Google Scholar 

  46. Ogawa T, Inugami A, Hatazawa J et al (1996) Clinical positron emission tomography for brain tumors: comparison of fludeoxyglucose F 18 and L-methyl-’11C-methionine. AJNR Am J Neuroradiol 17: 345–353

    PubMed  CAS  Google Scholar 

  47. Ogawa T, Kanno I, Shishido F et al (1991) Clinical value of PET with 18F-fluorodeoxyglucose and L-methyl-’11Cmethionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radio J 32: 197–202

    Article  CAS  Google Scholar 

  48. Derlon JM, Petit-Taboue MC, Chapon F et al (1997) The in vivo metabolic pattern of low-grade brain gliomas: a positron emission tomographic study using 8F-fluorodeoxyglucose and C-L-methylmethionine (see comments). Neurosurgery 40: 276–288

    Article  PubMed  CAS  Google Scholar 

  49. Goldman S, Levivier M, Pirotte B et al (1997) Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy (published erratum appears in J Nucl Med 1997, 38: 2002). J Nucl Med 38: 1459–1462

    PubMed  CAS  Google Scholar 

  50. Pirotte B, Goldman S, David P et al (1997) Stereotactic brain biopsy guided by positron emission tomography (PET) with [F-18]fluorodeoxyglucose and [C-11]methionine. Acta Neurochir (Wien) [Suppl] 68: 133–138

    CAS  Google Scholar 

  51. Pruim J, Willemsen AT, Molenaar WM et al (1995) Brain tumors: L- [1-C-11] tyrosine PET for visualization and quantification of protein synthesis rate. Radiology 197: 221–226

    PubMed  CAS  Google Scholar 

  52. Willemsen AT, van Waarde A, Paans AM et al (1995) In vivo protein synthesis rate determination in primary or recurrent brain tumors using L- [1–11 C] -tyrosine and PET. J Nucl Med 36: 411–419

    PubMed  CAS  Google Scholar 

  53. de Wolde H, Pruim I, Mastik MF et al (1997) Proliferative activity in human brain tumors: comparison of histopathology and L- [1-(11)C] tyrosine PET. J Nucl Med 38: 1369–1374

    PubMed  Google Scholar 

  54. Hara T, Kosaka N, Shinoura N et al (1997) PET imaging of brain tumor with [methyl-11 C] choline. J Nucl Med 38: 842–847

    PubMed  CAS  Google Scholar 

  55. Goethals P, Lameire N, van Eijkeren M et al (1996) [Methylcarbon-11] thymidine for in vivo measurement of cell proliferation. J Nucl Med 37: 1048–1052

    PubMed  CAS  Google Scholar 

  56. Vander Borght T, Lambotte L, Pauwels S et al (1991) Noninvasive measurement of liver regeneration with positron emission tomography and [2–11 C]thymidine. Gastroenterology 101: 794–799

    Google Scholar 

  57. Mankoff DA, Shields AF, Graham MM et al (1998) Kinetic analysis of 2- [carbon-11] thymidine PET imaging studies: compartmental model and mathematical analysis. J Nucl Med 39: 1043–1055

    PubMed  CAS  Google Scholar 

  58. Lucignani G, Losa M, Moresco RM et al (1997) Differentiation of clinically non-functioning pituitary adeno-mass from meningiomas and craniopharyngiomas by positron emission tomography with (1sF]fluoro-ethyl-spiperone. Eur J Nucl Med 24: 1149–1155

    PubMed  CAS  Google Scholar 

  59. Haldemann AR, RosIer H, Barth A et al (1995) Somatostatin receptor scintigraphy in central nervous system tumors: role of blood-brain barrier permeability. J Nucl Med 36: 403–410

    PubMed  CAS  Google Scholar 

  60. Schmidt M, Scheidhauer K, Luyken C et al (1998) Somatostatin receptor imaging in intracranial tumours. Eur J Nucl Med 25: 675–686

    Article  PubMed  CAS  Google Scholar 

  61. Kessler LS, Ruiz A, Donovan Post MJ et al (1998) Thallium201 brain SPECT of lymphoma in AIDS patients: pit-falls and technique optimization. AJNR Am J Neuroradiol 19: 1105–1109

    PubMed  CAS  Google Scholar 

  62. Lorberboym M, Wallach F, Estok L et al (1998) Thallium-201 retention in focal intracranial lesions for differential diagnosis of primary lymphoma and nonmalignant lesions in AIDS patients. J Nucl Med 39: 1366–1369

    PubMed  CAS  Google Scholar 

  63. Ruiz A, Ganz WI, Donovan Post J et al (1994) Use of thallium201 brain SPECT to differentiate cerebral lymphoma from toxoplasma encephalitis in AIDS patients. Am J Neurol Res 15: 1885–1894

    CAS  Google Scholar 

  64. O’Doherty MJ, Barrington SF, Campbell M et al (1997) PET scanning and the human immunodeficiency virus-positive patient. J Nucl Med 38: 1575–1583

    PubMed  Google Scholar 

  65. Villringer K, Lager H, Oichgans M et al (1995) Differential diagnosis of CNS lesions in AIDS patients by FDG-PET. J Comput Assist Tomogr 19: 532–536

    Article  PubMed  CAS  Google Scholar 

  66. Krishna L, Slizofski WJ, Katsetos CD et al (1992) Abnormal intracerebral thallium localization in a bacterial brain abscess. J Nucl Med 33: 2017–2019

    PubMed  CAS  Google Scholar 

  67. Tonami N, Matsuda H, Ooba H et al (1990) Thallium-201 accumulation in cerebral candidiasis: unexpected finding on SPECT. Clin Nucl Med 15: 397–400

    Article  PubMed  CAS  Google Scholar 

  68. Gorniak RI, Kramer EL, McMeeking AA et al (1997) Thallium-201 uptake in cytomegalovirus encephalitis. J Nucl Med 38:1386–1388

    PubMed  CAS  Google Scholar 

  69. Bemat L, Toth G, Kovacs L (1994) Tumour-like thallium-201 accumulation in brain infarcts, an unexpected finding on single-photon emission tomography (see comments). Eur J Nucl Med 21: 191–195

    Google Scholar 

  70. Kallen K, Heiling M, Andersson AM et al (1997) Evaluation of malignancy in ring enhancing brain lesions on CT by thallium-201 SPECT. J Neurol Neurosurg Psychiatry 63: 569–574

    Article  PubMed  CAS  Google Scholar 

  71. Barker FG 2nd, Chang SM, Valk PE et al (1997) 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer 79: 115–126

    Article  PubMed  CAS  Google Scholar 

  72. Holzer T, Herholz K, Ieske I et al (1993) FDG-PET as a prognostic indicator in radiochemotherapy of glioblastoma. J Comput Assist Tomogr 17: 681–687

    Article  PubMed  CAS  Google Scholar 

  73. Janus TJ, Kim EE, Tilbury R et al (1993) Use of (18F) fluorodeoxyglucose positron emission tomography in patients with primary malignant brain tumors. Ann Neurol 33: 540–548

    Article  PubMed  CAS  Google Scholar 

  74. Kim CK, Alavi JB, Alavi A et al (1991) New grading system of cerebral gliomas using positron emission tomography with F-18 fluorodeoxyglucose. J Neurooncol 10: 85–89

    Article  PubMed  CAS  Google Scholar 

  75. Mineura K, Sasajima T, Kowada M et al (1994) Perfusion and metabolism in predicting the survival of patients with cerebral gliomas. Cancer 73: 2386–2394

    Article  PubMed  CAS  Google Scholar 

  76. Patronas NJ, Di Chiro G, Kufta C et al (1985) Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 62: 816–822

    Article  PubMed  CAS  Google Scholar 

  77. Rozental IM, Levine RL, Nickles RI (1991) Changes in glucose uptake by malignant gliomas: preliminary study of prognostic significance. J Neurooncol 10: 75–83

    Article  PubMed  CAS  Google Scholar 

  78. Schifter T, Hoffman IM, Hanson MW et al (1993) Serial FDG-PET studies in the prediction of survival in patients with primary brain tumors. J Comput Assist Tomogr 17: 509–561

    Article  PubMed  CAS  Google Scholar 

  79. Valk P, Budinger T, Levin V et al (1988) PET of malignant cerebral activity and correlation with clinical outcome. J Neurosurg 69: 830–838

    Article  PubMed  CAS  Google Scholar 

  80. Piwnica-Worms D, Rao W, Kronauge JF et al (1995) Characterization of multidrug resistance P-glycoprotein transport function with an organo technetium cation. Biochemistry 34: 12210–12220

    Article  PubMed  CAS  Google Scholar 

  81. Rao W, Chiu ML, Kronauge JF et al (1994) Expression of recombinant human multidrug resistance P-glyco-protein in insect cells confers decreased accumulation of technetium99m-sestamibi. J Nucl Med 35: 510–515

    PubMed  CAS  Google Scholar 

  82. Yokogami K, Kawano H, Moriyama T et al (1998) Application of SPECT using technetium-99 m sestamibi in brain tumours and comparison with expression of the MOR-1 gene: is it possible to predict the response to chemotherapy in patients with gliomas by means of 99mTc-Sestamibi SPECT? Eur J Nucl Med 25: 401–409

    Article  PubMed  CAS  Google Scholar 

  83. Kao CH, Chang Lai SP, Chieng PU et al (1998) Technetium99m methoxyisobutylisonitrile chest imaging of small cell lung carcinoma: Relation to patient prognosis and chemotherapy response — a preliminary report. Cancer 83: 64–68

    Article  PubMed  CAS  Google Scholar 

  84. Kostakoglu L, Guc D, Canpinar H et al (1998) P-glycoprotein expression by technetium-99m-MIBI scintigraphy in hematologic malignancy. J Nucl Med 39: 1191–1197

    PubMed  CAS  Google Scholar 

  85. Moretti JL, Duran Cordobes M, Starzec A et al (1998) Involvement of glutathione in loss of technetium-99m-MIBI accumulation related to membrane MDR protein expression in tumor cells. J Nucl Med 39: 1214–1218

    PubMed  CAS  Google Scholar 

  86. Taki J, Sumiya H, Asada N et al (1998) Assessment of P-glycoprotein in patients with malignant bone and soft-tissue tumors using technetium-99m-MIBI scintigraphy. J Nucl Med 39: 1179–1184

    PubMed  CAS  Google Scholar 

  87. Rozental IM, Cohen ID, Mehta MP et al (1993) Acute changes in glucose uptake after treatment: the effects of carrnustine (BCNU) on human glioblastoma multiforme. J Neurooncol 15: 57–66

    Article  PubMed  CAS  Google Scholar 

  88. Holthoff VA, Herholz K, Berthold F et al (1993) In vivo metabolism of childhood posterior fossa tumors and primitive neuroectodermal tumors before and after treatment. Cancer 72: 1394–1403

    Article  PubMed  CAS  Google Scholar 

  89. Ogawa T, Kanno I, Hatazawa J et al (1994) Methionine PET for follow-up of radiation therapy of primary lymphoma of the brain. Radiographics 14: 101–110

    PubMed  CAS  Google Scholar 

  90. Rozental IM, Levine RL, Mehta MP et al (1991) Early changes in tumor metabolism after treatment: the effects of stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 20: 1053–1060

    Article  PubMed  CAS  Google Scholar 

  91. Raez L, Cabral L, Jian-Ping CAI, Landy H, Sfakianakis G, Byrne GE, Hurley J, Scerpella E, Jayaweera D, Harrington WJ Jr (1999) Treatment of AIDS-related primary central nervous system lymphoma with Zidovudine, Ganciclovir and Interleukin 2. AIDS Res Hum Retroviruses 15: 713–719

    Article  PubMed  CAS  Google Scholar 

  92. Levivier M, Goldman S, Pirotte B et al (1995) Diagnostic yield of stereotactic brain biopsy guided by positron emission tomography with (18F)fluorodeoxyglucose. J Neurosurg 82: 445–452

    Article  PubMed  CAS  Google Scholar 

  93. Schwartz RB, Carvalho PA, Alexander ED et al (1991) Radiation necrosis vs high-grade recurrent glioma: differentiation by using dual-isotope SPECT with 201 Tl and 99mTcHMPAO. AJNR Am J Neuroradiol 12: 1187–1192

    PubMed  CAS  Google Scholar 

  94. Schwartz RB, Holman BL, Polak F et al (1998) Dual-isotope single-photon emission computerized tomography scanning in patients with glioblastoma multiforme: association with patient survival and histopathological characteristics of tumor after high-dose radiotherapy. J Neurosurg 89: 60–68

    Article  PubMed  CAS  Google Scholar 

  95. Kosuda S, Fujii H, Aoki S et al (1994) Prediction of survival in patients with suspected recurrent cerebral tumors by quantitative thallium-201 single photon emission computed tomography. Int J Radiat Oncol Biol Phys 30: 1201–1206

    Article  PubMed  CAS  Google Scholar 

  96. Lorberboyrn M, Mandell LR, Mosesson RE et al (1997) The role of thallium-201 uptake and retention in intracranial tumors after radiotherapy. J Nucl Med 38: 223–226

    Google Scholar 

  97. Vertosick FF Jr, Selker RG, Grossman SI et al (1994) Correlation of Thallium-201 single photon emission computed tomography and survival after treatment failure in patients with glioblastoma multiforme. Neurosurgery 34: 396–401

    Article  PubMed  Google Scholar 

  98. Kuwert T, Probst-Cousin S, Woesler B et al (1997) Iodine123-alpha-methyl tyrosine in gliomas: correlation with cellular density and proliferative activity. J Nucl Med 38: 1551–1555

    PubMed  CAS  Google Scholar 

  99. Klutmann S, Bohuslavizki KH, Brenner W et al (1998) Somatostatin receptor scintigraphy in postsurgical followup examinations of meningiomas. J Nucl Med 39: 1913–1917

    PubMed  CAS  Google Scholar 

  100. Lee D, Kim Dl, Lee JT et al (1995) Indium-111-pentetreo-tide imaging in intra-axial brain tumors: comparison with thallium-201 SPECT and MRI. J Nucl Med 36: 537–541

    PubMed  CAS  Google Scholar 

  101. Kim EE, Chung SK, Haynie TP et al (1992) Differentiation of residual or recurrent tumors from post-treatment changes with F-18 FDG PET. Radiographics 12: 269–279

    PubMed  CAS  Google Scholar 

  102. Di Chiro G, Oldfield E, Wright DC et al (1998) Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR Am J Roentgenol 150: 189–197

    Article  Google Scholar 

  103. Doyle WK, Budinger TF, Valk PE et al (1987) Differentiation of cerebral radiation necrosis from tumor recurrence by [18F] FDG and 82Rb positron emission tomography. J Comput Assist Tomogr 11: 563–570

    Article  PubMed  CAS  Google Scholar 

  104. Ishikawa M, Kikuchi H, Miyatake S et al (1993) Glucose consumption in recurrent gliomas. Neurosurgery 33: 28–33

    Article  PubMed  CAS  Google Scholar 

  105. Patronas NJ, Di Chiro G, Brooks RA et al (1982) Work in progress: P8F fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology 144: 885–889

    PubMed  CAS  Google Scholar 

  106. Valk PE, Budinger TF, Levin VA et al (1988) PET of malignant cerebral tumors after interstitial brachytherapy: demonstration of metabolic activity and correlation with clinical outcome. J Neurosurg 69: 830–838

    Article  PubMed  CAS  Google Scholar 

  107. Mogard J, Kihlstrom L, Ericson K et al (1994) Recurrent tumor vs radiation effects after gamma knife radiosurgery of intracerebral metastases: Diagnosis with PET-FDG. J Comput Assist Tomogr 18: 177–181

    Article  PubMed  CAS  Google Scholar 

  108. Olivero WC, Dulebohn SC, Lister JR (1995) The use of PET in evaluating patients with primary brain tumours: is it useful? T Neurol Neurosurg Psychiatry 58: 250–252

    Article  CAS  Google Scholar 

  109. Ricci PE, Karis P, Heiserman IE et al (1998) Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol 19: 407–413

    PubMed  CAS  Google Scholar 

  110. Powe JE, Alavi J, Alavi A et al (1992) Cerebral metabolic changes in patients with brain tumors demonstrated by positron emission tomography. J Neuroimag 2: 1–7

    Google Scholar 

  111. Griffeth LK, Rich KM, Dehdashti F et al (1993) Brain metastases from non-central nervous system tumors: evaluation with PET (see comments). Radiology 186: 37–44

    PubMed  CAS  Google Scholar 

  112. Roelcke U, Blasberg RG, von Ammon K et al (1998) Dexamethasone treatment and plasma glucose levels: relevance for fluorine-18-fluorodeoxyglucose uptake measurements in gliomas. J Nucl Med 39: 879–884

    PubMed  CAS  Google Scholar 

  113. Nelson SJ, Vigneron DB, Dillon WP (1999) Serial evaluation of patients with brain tumors using volume MRI and 3D 1H MRSI. NMR Biomed 12: 123–128

    Article  PubMed  CAS  Google Scholar 

  114. Matheja P, Rickert C, Weckessser M et al (2000) Sequential scintigraphic strategy for the differentiation of brain tumors. Eur J Nucl Med 27: 550–558

    Article  PubMed  CAS  Google Scholar 

  115. Groscu AL, Weber W, Feldman HJ et al (2000) First experience with I-123-alpha-methyl-tyrosine SPECT in the 3-D radiation treatment planning of brain gliomas. Int J Radiat Oncol Biol Physics 47: 517–526

    Article  Google Scholar 

  116. Kallen K, Geijer B, Malmstrom P et al (2000) Quantitative 201T1 SPET imaging in the follow-up of treatment for brain tumour: a sensitive tool for the early identification of response to chemotherapy? Nucl Med Commun 21: 259–267

    Article  PubMed  CAS  Google Scholar 

  117. Nuutinen J, Sonninen P, Lehikoinen P et al (2000) Radiotherapy treatment planning and long-term follow-up with [(11)C] methionine PET in patients with low-grade astrocytoma. Int J Radiat Oncol Biol Phys 48: 43–52

    Article  PubMed  CAS  Google Scholar 

  118. Blasberg RG, Roelcke U, Weinreich R et al (2000) Imaging brain tumor proliferative activity with [124I] iododeoxyuridine. Cancer Res 60: 624–635

    PubMed  CAS  Google Scholar 

  119. Antinori A, DeRossi G, Ammassari A et al (1999) Value of combined approach with thallium-201 single photon emission computed tomography and Epstein-Barr virus DNA polymerase chain reaction in CSF for the diagnosis of AIDS related primary CNS lymphoma. J Clin Oncol 17: 554–560

    PubMed  CAS  Google Scholar 

  120. Kaplan AM, Bandy DJ, Manwaring KH et al (1999) Functional brain mapping using positron emission tomography scanning in preoperative neurosurgical planning for pediatric brain tumors. J Neurosurg 91: 797–803

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sfakianakis, G., Sfakianaki, E. (2002). Scintigraphy for Brain Tumors. In: Drevelegas, A. (eds) Imaging of Brain Tumors with Histological Correlations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04951-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04951-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04953-2

  • Online ISBN: 978-3-662-04951-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics