Advertisement

Binding Ability of Inorganic Major Components of Sea Water towards some Classes of Ligands, Metal and Organometallic Cations

  • C. De Stefano
  • C. Foti
  • A. Gianguzza
  • D. Piazzese
  • S. Sammartano
Chapter
Part of the Environmental Science book series (ESE)

Abstract

“Sea water chemical system” can be thought of as a heterogeneous multi-component solution whose aqueous phase, which also contains particulate matter and colloids, is in contact with the sediments and the atmosphere (see Millero, this volume). In such a system, all chemical elements are present as different chemical species in a very wide range of concentrations, from nmol 1-1 to mmol 1-1. A possible classification of sea water components, based on the types of substances present (inorganic and organic ions and molecules, organometallic compounds, colloids, etc.) and on their concentrations, is shown in Table 9.1.

Keywords

Formation Constant Binding Ability Protonation Constant Carboxylic Ligand Speciation Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong FAJ (1965) Phosphorus. In: Riley JP, Skirrow G (eds) Chemical oceanography, 1st edn, vol I. Academic Press, New York, pp 323–364Google Scholar
  2. Atlas E, Culberson C, Pytkowicz RM (1976) Phosphate association with Na+, Ca2+ and Mg2+ in seawater. Mar Chem 4:243–254CrossRefGoogle Scholar
  3. Bates RG, Calais JG (1981) Thermodynamics of the dissociation of BisH+ in seawater from 5 to 40 °C. J Sol Chem 10(4):269–279CrossRefGoogle Scholar
  4. Bates RG, Erickson WP (1986) Thermodynamics of the dissociation of 2-aminopyridinium ion in synthetic seawater and a standard for pH in marine systems. J Sol Chem 15(11):891–901CrossRefGoogle Scholar
  5. Bremmer JM (1967) In: Mc Laren AD, Peterson GH (eds) Soil Biochemistry, vol I. Marcel Dekker, New YorkGoogle Scholar
  6. Buffle J (1988) Complexation reactions in aquatic systems — an Analytical approach. Ellis Horwood Series in Analytical Chemistry, Chichester, England Campbell JW, Goldstein L (eds) (1972) Nitrogen metabolism and the environment. Academic Press, LondonGoogle Scholar
  7. Casale A, De Robertis A, De Stefano C, Gianguzza A (1989) Thermodynamic parameters for the formation of calcium α-alalinate complexes in aqueous solution. Thermochim Acta 140:59–66CrossRefGoogle Scholar
  8. Casale A, Foti C, Sammartano S, Signorino G (1998) Thermodynamic parameters for the protonation of some polyamines C(2n_2)NnH(5n_2) in NaCl aqueous solution at different ionic strengths. Ann Chim (Rome) 88:55–70Google Scholar
  9. Craig PJ, Miller D (1997) Analysis and speciation of organometallic compounds in the marine environment. In: Gianguzza A, Pelizzetti E, Sammartano S (eds) Marine chemistry — an environmental analytical chemistry approach. Kluwer Academic, Dordrecht (Water Science and Technology Library, vol XXV, pp 161–172)Google Scholar
  10. Culberson C, Pytkowicz RM, Hawley JE (197o) Seawater alkalinity determination by the pH method. J Mar Res 28:15–21Google Scholar
  11. Czerminski JB, Dickson AG, Bates RG (1982) Thermodynamics of the dissociation of morpholinium ion in seawater: J Sol Chem 11(2):79–89CrossRefGoogle Scholar
  12. Daniele PG, De Robertis A, De Stefano C, Sammartano S, Rigano C (1985) On the possibility of determining the thermodynamic parameters for the formation of weak complexes using a simple model for the dependence on ionic strength of activity coefficients. Na+, K+ and Ca2+ complexes of low molecular weight ligands in aqueous solution. J Chem Soc Dalton Trans 2353–2361Google Scholar
  13. Daniele PG, De Stefano C, Prenesti E, Sammartano S 1994Weak complex formation in aqueous solution. Curr Top Sol Chem 1:95–106Google Scholar
  14. Daniele PG, Prenesti E, De Stefano C, Sammartano S(1995) Formation and stability of proton-amineinorganic anion complexes in aqueous solution. J Solution Chem 24:325–341Google Scholar
  15. Daniele PG, Prenesti E, De Robertis A, De Stefano C, Foti C, Giuffrè O, Sammartano S(1997) Binding of inorganic and organic polyanions by protonated open chain polyamines in aqueous solution. Ann Chim (Rome) 87:415–447 (Errata corrige (1998) 88:447–448)Google Scholar
  16. Daumas RA (1976) Variations of particulate proteins and dissolved amino acids in coastal seawater. Mar Chem 4:225–242CrossRefGoogle Scholar
  17. Demianov P, De Stefano C, Gianguzza A, Sammartano S (1995) Equilibrium studies in natural waters: Speciation of phenolic compounds in synthetic seawater at different salinities. Env Tox Chem 14(5):767–773CrossRefGoogle Scholar
  18. De Robertis A, De Stefano C, Gianguzza A (1991) Salt effects on the protonation of L-histidine and L-aspartic acid: A complex formation model. Thermochim Acta 177:39–57CrossRefGoogle Scholar
  19. De Robertis A, De Stefano C, Patanè G, Sammartano S (1993) Effects of salt on the protonation in aqueous solution of triethylenetetramine and tetraethylenepentamine. J Solution Chem 22:927–940CrossRefGoogle Scholar
  20. De Robertis A, De Stefano C, Sammartano S, Gianguzza A (1994) Equilibrium studies in natural fluids. A chemical speciation model for the major constituents of seawater. Chem Spec Bioav 6:65–84Google Scholar
  21. De Robertis A, Foti C, Sammartano S, Gianguzza A (1997) Chemical speciation of some classes of low molecular weight ligands in seawater. In: Gianguzza A, Pellizzetti E, Sammartano S (eds) Marine chemistry — an environmental analytical chemistry approach. Kluwer Academic Publishers, Dordrecht, pp 59–69Google Scholar
  22. De Robertis A, Foti C, Patanè G, Sammartano S (1998a) Hydrolysis of (CH3)Hg+ in different ionic media: Salt effects and complex formation. J Chem Eng Data 43:957–960CrossRefGoogle Scholar
  23. De Robertis A, De Stefano C, Gianguzza A, Sammartano S (1998b) Binding of polyanions by biogenic amines. I. Formation and stability of protonated putrescine and cadaverine complexes with inorganic anions. Talanta 46:1085–1093CrossRefGoogle Scholar
  24. De Robertis A, De Stefano C, Foti C, Gianguzza A, Piazzese D, Sammartano S(2000) Protonation constants and association of polycarboxylic ligands with the major components of seawater J Chem Eng Data 45(6):996–1000CrossRefGoogle Scholar
  25. De Stefano C, Gianguzza A (1991) A complex formation model for the salt effects on the protonation of lysine in aqueous sodium and calcium chlorides and tetraethylammonium iodide solutions. Ann Chim (Rome) 81:119–130Google Scholar
  26. De Stefano C, Foti C, Gianguzza A, Rigano C, Sammartano S (1994) Equilibrium studies in natural fluids. Use of synthetic seawater and other media as background salts. Ann Chim (Rome) 84:159–75Google Scholar
  27. De Stefano C, Foti C, Gianguzza A, Sammartano S (1995) Chemical speciation of amino acids in electrolyte solutions containing major components of natural fluids. Chem Spec Bioavail 7(1):1–8Google Scholar
  28. De Stefano C, Foti C, Gianguzza A, Sammartano S (1998) The single salt approximation for the major components of seawater: Association and acid-base properties. Chem Spec Bioavail 10(1):27–29CrossRefGoogle Scholar
  29. De Stefano C, Foti C, Gianguzza A, Sammartano S (1999a) Interaction of polyamines with Mg2+ and Ca2+. J Chem Eng Data 44(4)744–749CrossRefGoogle Scholar
  30. De Stefano C, Foti C, Gianguzza A, Marrone F, Sammartano S (1999b) Hydrolysis of,ethyltin(IV) trichloride in aqueous NaC1 and NaNO3 solutions at different ionic strengths and temperatures. Appl Organomet Chem 13:805–811CrossRefGoogle Scholar
  31. De Stefano C, Foti C, Gianguzza A, Millero FJ, Sammartano S (1999c) Hydrolysis of (CH3)3Sn+ in various salt media. J Solution Chem 28(7):959–972CrossRefGoogle Scholar
  32. De Stefano C, Gianguzza A, Piazzese D, Sammartano S (1999d) Speciation of low molecular weight carboxylic ligands in natural fluids: Protonation constants and association with major components of seawater of oxydiacetic and citric acids. Anal Chim Acta 398:103–110CrossRefGoogle Scholar
  33. De Stefano C, Foti C, Gianguzza A, Sammartano S.(2000a) Hydrolysis processes of organotin(IV) compounds in sea water. In: Gianguzza A, Pellizzetti E, Sammartano S (eds) Chemical processes in marine environments. Springer-Verlag, Berlin, pp 231–228Google Scholar
  34. De Stefano C, Foti C, Gianguzza A, Sammartano S (2000b) The interaction of amino acids with the major constituents of natural waters at different ionic strengths. Mar Chem 72:61–76CrossRefGoogle Scholar
  35. De Stefano C, Gianguzza A, Piazzese D (2000c) Complexes of azelaic and diethylenetrioxydiacetic acids with Na+, Mg2+ and Ca2+ in NaCI aqueous solutions, at 25 °C. J Chem Eng Data 45(1):15–19CrossRefGoogle Scholar
  36. De Stefano C, Foti C, Gianguzza A, Sammartano S (2000d) Speciation of low molecular weight ligands in natural fluids: Protonation constants and association of open chain polyamines with the major components of seawater. Anal Chim Acta 418:43–51CrossRefGoogle Scholar
  37. Dickson AG, Riley JP 1979 The estimation of acid dissociation constants in seawater media from potentiometric titrations with strong base. II The dissociation of phosphoric acid. Mar Chem 7:101–109CrossRefGoogle Scholar
  38. Evans CA, Guevremont R (1979) Metal complexes of aspartic acid and glutamic acid. In: Siegel H (ed) Metal ions in biological systems, vol IX. Marcel Dekker, New York, pp 41–69Google Scholar
  39. Fiol S, Brandariz I, Sastre de Vicente ME (1995a) The protonation constants of glycine in artificial seawater at 25 °C. Mar Chem 49:215–219CrossRefGoogle Scholar
  40. Fiol S, Brandariz I, Herrero RF, Vilariño T, Sastre de Vicente ME1995b Protonation constants of amino acids in artificial sea water at 25 °C. J Chem Eng Data 40:117–119CrossRefGoogle Scholar
  41. Fiol S, Vilariño T, Herrero RF, Sastre de Vicente ME, Arce F (1998) Protonation constants of valine, serine, and β-alanine in artificial seawater at 25 °C. J Chem Eng Data 43:393–395CrossRefGoogle Scholar
  42. Fogg GF (1975) Primary productivity. In: Riley JP, Skirrow G (eds) Chemical oceanography, 2nd edn. Academic Press, New York, pp 346–444Google Scholar
  43. Foti C, Gianguzza A, Millero FJ, Sammartano S (1999) The speciation of (CH3)2Sn2+ in electrolyte solution containing the major components of natural waters. Aquatic Geochem 5:381–398CrossRefGoogle Scholar
  44. Foti C, Gianguzza A, Piazzese D, Trifiletti G(2000) Inorganic speciation of organotin(IV) cations in natural waters with particular references to seawater. Chem Spec Bioavail 12(2):1–12CrossRefGoogle Scholar
  45. Garrels RM, Thompson ME (1962) A chemical model for sea water at T = 25 °C and one atmosphere total pressure. Am J Sci 260:57–66CrossRefGoogle Scholar
  46. Hansson I (1972) An analytical approach to the carbonate system seawater. Thesis, GøteborgGoogle Scholar
  47. Hershey JP, Millero FJ, Fernandez M (1989) The ionization of phosphoric acid in NaCl and NaMgCl solutions at 25 °C. J Solution Chem 18:875–892CrossRefGoogle Scholar
  48. Johansson O, Wedborg M (1979) Stability constants of phosphoric acid in seawater of 5–40%o salinity and temperatures of 5–25 °C. Mar Chem 8:57–69CrossRefGoogle Scholar
  49. Johansson O, Wedborg M (1985) Determination of the stability constant for acetic acid in synthetic seawater media at various temperatures and salinities. J Solution Chem 14:431–439CrossRefGoogle Scholar
  50. Johnson KS, Pytckowicz RM1979 Activity coefficients in electrolyte solutions, vol I. CRC Press, Boca Raton, FL, pp 1–61Google Scholar
  51. Kester DR, Pytkowicz RM (1967) Determination of the apparent dissociation constants of phosphoric acid in seawater. Limnol Oceanogr 12:243–252CrossRefGoogle Scholar
  52. Kester DR, Duedall IW, Connors DN, Pytkowicz RM (1967) Preparation of artificial seawater. Limnol Oceanogr 12:176–178CrossRefGoogle Scholar
  53. Khoo KH, Ramette RW, Culberson CH, Bates RG (1977) Determination of hydrogen ion concentrations in seawater from 5 to 4o °C: Standard potentials at salinities from 20 to 45. Analytical Chem 49(1)29–34CrossRefGoogle Scholar
  54. Lee C, Wakeham SG (1989) Organic matter in sea water: Biogeochemical processes. In: Riley JP (ed) Chemical oceanography, vol IX. Academic Press, New YorkGoogle Scholar
  55. Lyman J, Fleming RH (1940) Composition of seawater. J Mar Res 3:134–146Google Scholar
  56. Martell AE, Smith RM1977 Stability constants of nnetal complexes, NIST PC-based database. National Institute of Standards and Technology, Gaithersburg, MDGoogle Scholar
  57. Mikita MA, Steenlink C, Wershaw RL (1981) Carbon-13 enriched Nuclear Magnetic Resonance method for the determination of hydroxyl functionality in humic substances. Anal Chem 53:1715CrossRefGoogle Scholar
  58. Millero FJ (1974) Seawater as a multi-component electrolyte solution. In: Goldberg ED (ed) The Sea, vol V. Wiley, New YorkGoogle Scholar
  59. Millero FJ (1990) Marine solution chemistry and ionic interactions. Mar Chem 30:205–229CrossRefGoogle Scholar
  60. Millero FJ (1996) Chemical oceanography, 2nd edn. CRC Press, Boca Raton, FLGoogle Scholar
  61. Millero FJ, Schreiber DR (1982) Use of the ion pairing model to estimate activity coefficients of the ionic components of natural waters. Am J Sci 282:1508–1540CrossRefGoogle Scholar
  62. Perrin DD1979Stability constants of metal ions complexes. Part B: Organic ligands. IUPAC (Chemical Data Series No. 22)Google Scholar
  63. Pettit LD, Powell KJ1997 IUPAC stability constants database. Academic Software, Outlay, UKGoogle Scholar
  64. Pitzer KS (1991) Activity coefficients in electrolyte solutions, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  65. FL Pytkowicz RM, Hawley JE(1974)Bicarbonate and carbonate ion-pairs and a model of seawater at 25 °C. Limnol Oceanogr 19:223–234CrossRefGoogle Scholar
  66. Sillén LG, Martell AE (1964) Stability constants. The Chemical Society, London (Special Publication No. 17)Google Scholar
  67. Sillén LG, Martell AE (1971) Stability constants. The Chemical Society, London (Special Publication No. 25) Spencer CP (1975) The micronutrient elements. In: Riley JP, Skirrow G (eds) Chemical oceanography, 2nd edn. Academic Press, New York, pp 245–295Google Scholar
  68. Stephens GC (1972) Amino acid accumulation and assimilation in marine organism. In: Campbell JW, Goldstein L (eds) Nitrogen metabolism and the environment. Academic Press, London, pp 155–184Google Scholar
  69. Stevenson FJ, Butler JHA (1969) In: Eglinton G, Murphy MTJ (eds) Organic geochemistry. Springer-Verlag, BerlinGoogle Scholar
  70. Stumm W, Brauner PA (1975) Chemical speciation. In: Riley JP, Skirrow G (eds) Chemical oceanography, 2nd edn, vol I. Academic Press, New York, pp 173–234Google Scholar
  71. Tobias RS, Farrer H, Hughes M, Nevett BA (1966) Hydrolysis of the aquo ions R3Sn+ and R2Sn2+: Steric effects on the dissociation of aquo acids. Inorg Chem 5:2052–2055CrossRefGoogle Scholar
  72. Tuschall JR, Brezonik PL (1980) Characterization of organic nitrogen in natural water: Its molecular size, protein content, and interaction with heavy metals. Limnol Oceanogr 25:495–504CrossRefGoogle Scholar
  73. Williams PM (1971) Organic compounds in aquatic environment. Marcel Dekker, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • C. De Stefano
  • C. Foti
  • A. Gianguzza
  • D. Piazzese
  • S. Sammartano

There are no affiliations available

Personalised recommendations