Skip to main content

Speciation of Metals in Natural Waters

  • Chapter
Chemistry of Marine Water and Sediments

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

The reactions of many trace metals in natural waters are affected by their speciation or form. This will affect the biological uptake (Anderson and Morel 1982) and toxicity (Sunda and Ferguson 1983) as well as the solubility (Liu and Millero 1999). For example, Fe(II) and Mn(II) are biologically available for marine organisms, while Fe(III) and Mn(IV) are not normally available. Although the form of an element in natural waters can be four phases (solid, gas, colloid and dissolved), we will only consider the form of a metal in the dissolved state. The definition of a dissolved metal is defined by the filter size used to separate solid and colloidal phases from the soluble form. In the past, this separation was made with a 0.45 μm filter, and in more recent work smaller size filters are used (~o.2 μm). The speciation of metals is controlled by ionic interactions of the metals with inorganic (Cl-, OH-, CO 2-3 , etc.) and organic (fulvic and humic acids) ligands. The dissolved forms of a metal like Fe in sea water can include:

  • Free ions: Fe2+, Fe3+

  • Inorganically Complexed: Fe(OH)+, Fe(OH)2, FeCO3 and Fe(CO3) 2-2 , FeCl2+, FeCl +2 , FeSO +4 , Fe(SO4) 2-2 , Fe(OH)2+, Fe(OH)3, FeCO +3 , and Fe(CO3) 2-2

  • Organically Complexed: FeL, where L can be a wrde range or unKrnown nlatural llgands (fulvic and humic acids, siderifores, etc.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson MA, Morel FM (1982) The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. Limnol Oceanogr 27:789–813

    Article  CAS  Google Scholar 

  • Baes CF, Mesmer RE (1976) The hydrolysis of cations. John Wiley and Sons, New York

    Google Scholar 

  • Berg CMG van den (1982) Determination of copper complexation with natural organic ligands in seawater by equilibration with Mn02. II. Experimental procedures and application to surface seawater. Mar Chem 11:323–342

    Article  Google Scholar 

  • Baes CF, Mesmer RE (1976) The hydrolysis of cations. John Wiley and Sons, New York

    Google Scholar 

  • Berg CMG van den (1982) Determination of copper complexation with natural organic ligands in seawater by equilibration with Mn02. II. Experimental procedures and application to surface seawater. Mar Chem 11:323–342

    Article  Google Scholar 

  • Berg CMG van den (1995) Evidence for organic complexation of iron in seawater. Mar Chem 50:139–157

    Article  Google Scholar 

  • Breeman N van (1973) Calculation of activity coefficients in natural waters. Geochim Cosmochim Acta 37:101–107

    Article  Google Scholar 

  • Bruland KW (1989) Complexation of zinc by natural organic ligands in the central North Pacific. Limnol Oceanogr 34:269–285

    Article  CAS  Google Scholar 

  • Bruland KW (1992) Complexation of cadmium by natural organic ligands in the central North Pacific. Limnol Oceanogr 37:1008–1017

    Article  CAS  Google Scholar 

  • Byrne RH Jr, Kester DR (1974) Inorganic speciation of boron in seawater. J Mar Res 32:119–127

    CAS  Google Scholar 

  • Byrne RH, Kester DR (1976) Solubility of hydrous ferric oxide and iron speciation in seawater. Mar Chem 4:255–274

    Article  CAS  Google Scholar 

  • Byrne RH, Luo Y-R (2000) Direct observations of nonintegral hydrous ferric oxide solubility products: K*so =[Fe3+] [H1–2.86. Geochim Cosmochim Acta 64:1873–1877

    Article  CAS  Google Scholar 

  • Campbell DM, Millero FJ, Roy R, Roy L, Lawson M, Vogel KM, Moore CP (1993) The standard potential for the hydrogen — silver, silver chloride electrode in synthetic seawater. Mar Chem 44:221–233

    Article  CAS  Google Scholar 

  • Clegg SL, Whitfield M (1991) Activity coefficients in natural waters. In: Pitzer KS (ed) Activity coefficients in electrolyte solutions. CRS, Boca Raton, FL, pp 279–434

    Google Scholar 

  • Clegg SL, Whitfield M (1995) A chemical model of seawater including dissolved ammonia and the stoichiometric dissociation constant of ammonia in estuarine water and seawater from -2 to 40 °C. Geochim Cosmochim Acta 59:2403–2421

    Article  CAS  Google Scholar 

  • Coale KH, Bruland KW (1988) Copper complexation in the Northeast Pacific. Limnol Oceanogr 33:1084–1101

    Article  CAS  Google Scholar 

  • Criss C, Millero FJ (1996) Modeling the heat capacities of aqueous 1-i electrolyte solutions with Pitzer’s equations. J Phys Chem 91:1288–1294

    Article  Google Scholar 

  • Criss C, Millero FJ (1999) Modeling the heat capacities of high valence-type electrolyte solutions with Pitzer’s equations. J Solution Chem 28:849–864

    Article  CAS  Google Scholar 

  • Culberson C, Pytkowicz RM (1973) Ionization of water in seawater. Mar Chem 1:309–316

    Article  CAS  Google Scholar 

  • Culberson C, Pytkowicz RM, Hawley JE (1970) Seawater alkalinity determination by the pH method. J Mar Res 28:15–21

    CAS  Google Scholar 

  • Culberson C, Latham G, Bates RG (1978) Solubilities and activity coefficients of calcium and strontium sulfates in synthetic seawater at o.5 and 25 °C. J Phys Chem 82:2693–2699

    Article  CAS  Google Scholar 

  • Dickson AG (1990a) Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep-Sea Res 37:755–766

    Article  CAS  Google Scholar 

  • Dickson AG(1990b) Standard potential of the reaction: AgCl(s) + 1/2H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the HSO4 in synthetic sea water from 273.15 to 318.15 K. J Chem Thermodyn 22:113–127

    Article  CAS  Google Scholar 

  • Dickson AG, Riley JP (1979a) The estimation of acid dissociation constants in seawater from potentiometric titrations with strong base. I. The ion product of water — Kw. Mar Chem 7:89–99

    Article  CAS  Google Scholar 

  • Dickson AG, Riley JP (1979b) The estimation of acid dissociation constants in seawater from potentiometric titrations with strong base. II. The dissociation of phosphoric acid. Mar Chem 7:101–109

    Article  CAS  Google Scholar 

  • Dickson AG, Whitfield M (1981) An ion-association model for estimating acidity constants (at 251 C and 1 atm total pressure) in electrolyte mixtures related to seawater (ionic strength < i mol kg H20). Mar Chem 10:315–333

    Article  CAS  Google Scholar 

  • Felmy AR, Weare JH (1986) The prediction of borate mineral equilibria in natural waters: Application to Searles Lake, California. Geochim Cosmochim Acta 50:2771–2783

    Article  CAS  Google Scholar 

  • Garrels RM, Thompson ME (1962) A chemical model for seawater at 25 °C and one atmosphere total pressure. Am J Sci 260:57–66

    Article  CAS  Google Scholar 

  • Gieskes JMT (1966) The activity coefficients of sodium chloride in mixed electrolyte solutions at 25 °C. Physik Chemie Neue Folge 50:78–90

    Article  CAS  Google Scholar 

  • Gledhill M, Berg CMG van den (1994) Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar Chem 47:41–54

    Article  CAS  Google Scholar 

  • Goyet C, Poisson A (1989) New determination of carbonic acid dissociation constants in seawater as a function of temperature and salinity. Deep-Sea Res 36:1635–1654

    Article  CAS  Google Scholar 

  • Greenberg JP, Møller N (1989) The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Cl-S04-H20 system to high concentration from o to 25o °C. Geochim Cosmochim Acta 53:2503–2518

    Article  CAS  Google Scholar 

  • Hansson I (1972) An analytical approach to the carbonate system in seawater. PhD dissertation, University of Göteborg, Sweden Hansson I (1973) A new set of acidity constants for carbonic acid and boric acid in seawater. Deep-Sea Res 20:461–478

    Google Scholar 

  • Harvie CE, Weare JH (1980) The prediction of mineral solubilities in natural waters: The Na-K-Mg-CaSO4-Cl-H20 system from zero to high concentration at 25 °C. Geochim Cosmochim Acta 44:981–997

    Article  CAS  Google Scholar 

  • Harvie CE, Møller N, Weare JH (1984) The prediction of mineral solubilities in natural waters: The NaK-Mg-Ca-H-Cl-SO4-OH-HCO3–0O3–0O3-H2O system to high ionic strengths at 25 °C. Geochim Cosmochim Acta 48:723–752

    Article  CAS  Google Scholar 

  • He S, Morse JW (1993) The carbonic acid system and calcite solubility in aqueous Na-K-Ca-Mg-Cl-SO4 solutions from o to 90 °C. Geochim Cosmochim Acta 57:3533–3554

    Article  CAS  Google Scholar 

  • Hering JG, Sunda WG, Ferguson RL, Morel FMM (1987) A field comparison of two methods for the determination of copper complexation: Bacterial bioassay and fixed-potential amperometry. Mar Chem 20:299–312

    Article  CAS  Google Scholar 

  • Johansson O, Wedborg M (1980) The ammonia-ammonium equilibrium in seawater at temperatures between 5 and 25 °C. j Solution Chem 9:37–44

    Article  CAS  Google Scholar 

  • Johnson KE, Pytkowicz RM (1981) The activity of NaCl in seawater of 10–40%o salinity and 5–25 °C at 1 atmosphere. Mar Chem 10:85–91

    Article  CAS  Google Scholar 

  • Kester DR, Pytkowicz RM (1967) Determination of the apparent dissociation constants of phosphoric acid in seawater. Limnol Oceanogr 12:243–252

    Article  CAS  Google Scholar 

  • Khoo KH, Ramette RW, Culberson CH, Bates RG (1977a) Determination of hydrogen ion concentrations in seawater from 5 to 4o °C: standard potentials at salinities from 20 to 45%o. Anal Chem 49:29–34.

    Article  CAS  Google Scholar 

  • Khoo KH, Culberson CH, Bates RG (1977b) Thermodynamics of ammonium ion in seawater from 5 to 40 °C. J Solution Chem 6:281–290

    Article  CAS  Google Scholar 

  • Kramer CJM, Duinker JC (1984) Complexation capacity and conditional stability constants for copper of sea and estuarine waters, sediment extracts and colloids. In: Kramer CJM, Duinker JC (eds) Complexation of trace metals in natural waters. Nijhoff/Junk, The Hague, The Netherlands, pp 217–228

    Google Scholar 

  • Kuma K, Nishioka J, Matsunaga K (1996) Controls on iron(III) hydroxide solubility in seawater: The influence of pH and natural organic chelators. Limnol Oceanogr 41:396

    Article  CAS  Google Scholar 

  • Liu SX, Millero FJ (1999)The solubility of iron in sodium chloride solutions. Geochim Cosmochim Acta 63:3487–3497

    Article  CAS  Google Scholar 

  • Liu SX, Millero FJ (2002) The solubility of iron in seawater. Mar Chem 17:43–54

    Article  Google Scholar 

  • Mantoura RFC, Dickson A, Riley JP (1978) The complexation of metals with humic materials in natural waters. Est Coastal Mar Sci 6:387–408

    Article  CAS  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Millero FJ (1979a) Effects of pressure and temperature on activity coefficients. In: Pytkowicz RM (ed) Activity coefficients in electrolyte solutions, vol II. CRC Press, Boca Raton, FL, pp 63–151

    Google Scholar 

  • Millero FJ (1979b) The thermodynamics of the carbonate system in seawater. Geochim Cosmochim Acta 43:1651–1661

    Article  CAS  Google Scholar 

  • Millero FJ (1982) Use of models to determine ionic interactions in the natural waters. Thalassia Jugoslavica 1–4:253–291

    Google Scholar 

  • Millero FJ (1986) The pH of estuarine waters. Limnol Oceanogr 31(4):839–847

    Article  CAS  Google Scholar 

  • Millero FJ (1990a) Effect of speciation on the rates of oxidation of mnetals. In: Melchior D, Bassett R (eds) Chemical modeling in aqueous systems II. ACS Books, Washington D.C., pp 447–460

    Chapter  Google Scholar 

  • Millero FJ (1990b) Marine solution chemistry and ionic interactions. Mar Chem 30:205–229

    Article  CAS  Google Scholar 

  • Millero FJ (1992) Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength. Geochim Cosmochim Acta 56:3123–3132

    Article  CAS  Google Scholar 

  • Millero FJ (1995) Thermodynamics of carbon dioxide system in the oceans. Geochim Cosmochim Acta 59:661–677

    Article  CAS  Google Scholar 

  • Millero FJ (1998) Solubility of Fe(III) in seawater. Earth Planet Sci Lett 154:323–330

    Article  CAS  Google Scholar 

  • Millero FJ (1996) Chemical oceanography. CRC Press, Boca Raton, FL

    Google Scholar 

  • Millero FJ (2001) The physical chemistry of natural waters. Wiley Scientific, N.Y.

    Google Scholar 

  • Millero FJ, Hawke DJ (1992) Ionic interactions of divalent metals in natural waters. Mar Chem 40:19–48

    Article  CAS  Google Scholar 

  • Millero FJ, Pierrot D (1998) A chemical model for natural waters. Aquatic Geochem 4:153–199

    Article  CAS  Google Scholar 

  • Millero FJ, Roy R(1997) A chemical model for the carbonate system in natural waters. Croatia Chemica Acta 70:1–38

    CAS  Google Scholar 

  • Millero FJ, Schreiber DR (1982) Use of the ion pairing model to estimate activity coefficients of the ionic components of natural waters. Am J Sci 282:1508–1540

    Article  CAS  Google Scholar 

  • Millero FJ, Plese T, Fernandez M (1988) The dissociation of hydrogen sulfide in seawater. Limnol Oceanogr 33:269–274

    Article  CAS  Google Scholar 

  • Millero FJ, Sharma VK, Karn B (1991) The rate of reduction of Cu(II) with hydrogen peroxide in seawater. Mar Chem 36:71–83

    Article  CAS  Google Scholar 

  • Millero FJ, Johnson R, Vega C, Sharma VK, Sotolongo S (1992) The effect of ionic interactions on the rates of reduction of Cu(II) with H202 in aqueous solutions. J Solution Chem 21:1271–1287

    Article  CAS  Google Scholar 

  • Millero FJ, Yao W, Aicher J(1995) The speciation of Fe(II) and Fe(III) in natural waters. Mar Chem 50:21–39

    Article  CAS  Google Scholar 

  • Moffett JW, Zika RG (1987) Solvent extraction of copper acetylacetonate in studies of copper (II) speciation in seawater. Mar Chem 21:301–313

    Article  CAS  Google Scholar 

  • Møller N (1988) The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-Ca-Cl-S04-H20 system, to high temperature and concentration. Geochim Cosmochim Acta 52:821–837

    Article  Google Scholar 

  • Mucci A (1983) The solubility of calcite and aragonite in seawater at various salinities, temperatures and one atmosphere total pressure. Am J Sci 283:780–799

    Article  CAS  Google Scholar 

  • Pabalan RT, Pitzer KS (1987) Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperature for mixtures in the system Na-K-Mg-C1-S04-OH-H20. Geochim Cosmochim Acta 51:2429–2443

    Article  CAS  Google Scholar 

  • Pitzer KS (1975) Thermodynamics of electrolytes. V. Effects of higher order electrostatic terms. J Solution Chem 3:249–265

    Article  Google Scholar 

  • Pitzer KS (1979) Theory: Ion interaction approach. In: Pytkowicz RM (ed) Activity coefficients in electrolyte solutions, vol I. CRC Press, Boca Raton, FL, pp 157–208

    Google Scholar 

  • Pitzer KS (1991) Theory: Ion interaction approach: Theory and data collection. In: Pitzer KS (ed) Activity coefficients in electrolyte solutions, 2nd edn, vol I. CRC Press, Boca Raton, FL, pp 75–153

    Google Scholar 

  • Pitzer KS, Kim JJ (1974) Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J Am Chem Soc 96:5701–5707

    Article  CAS  Google Scholar 

  • Pitzer KS, Mayorga G (1973) Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J Phys Chem 77:2300–2308

    Article  CAS  Google Scholar 

  • Pitzer KS, Mayorga G (1974) Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2–2 electrolytes. J Solution Chem 3:539–546

    Article  CAS  Google Scholar 

  • Platford RF (1965) The activity coefficient of sodium chloride in seawater. J Mar Res 23:55–62

    Google Scholar 

  • Platford RF, Dafoe T (1965) The activity coefficient of sodium sulfate in seawater. J Mar Res 23:63–68

    Google Scholar 

  • Roy RN, Roy LN, Lawson M, Vogel KM, Porter-Moore C, Davis W, Millero FJ, Campbell DM (1993) The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures o to 45 °C. Mar Chem 44:249–259

    Article  CAS  Google Scholar 

  • Rue EL, Bruland KW (1995) Complexation of iron(III) by natural organic ligands in the central North Pacific as determined by competitive equilibration/adsorptive cathodic stripping voltammetric method. Mar Chem 50:117–138

    Article  CAS  Google Scholar 

  • Sharma VK, Millero FJ (1988) Oxidation of Copper(I) in seawater. Environ Sci Technol 22:768–771

    Article  CAS  Google Scholar 

  • Sharma VK, Millero FJ (1989) The oxidation of Cu(I) with H202 in natural waters. Geochim Cosmochim Acta 53:2269–2276

    Article  CAS  Google Scholar 

  • Silvester LF, Pitzer KS (1978) Thermodynamic of electrolytes. X. Enthalpy and the effect of temperature on the activity coefficients. J Solution Chem 7:327–337

    Article  CAS  Google Scholar 

  • Simonson JM, Roy RN, Gibbons JJ (1987a) Thermodynamics of aqueous mixed potassium carbonate, bicarbonate, and chloride solutions to 368 K. J Chem Eng Data 32:41–45

    Article  CAS  Google Scholar 

  • Simonson JM, Roy RN, Connole J, Roy LN, Johnson DA (1987b) The thermodynamics of aqueous borate solutions. II. Mixtures of boric acid with calcium or magnesium borate and chloride. J Solution Chem 16:791–803

    Article  CAS  Google Scholar 

  • Simonson JM, Roy RN, Mrad D, Lord P, Roy LN, Johnson DA, (1988) The thermodynamics of aqueous borate solutions, I. Mixtures of boric acid with sodium or potassium borate and chloride. J Solution Chem 17:435–446

    Article  CAS  Google Scholar 

  • Sohn ML, Hughes MC (1981) Metal complex formation constants of some sedimentary humic acids with Zn(II), Cu(II) and Cd(II). Geochim Cosmochim Acta 45:2393–2399

    Article  CAS  Google Scholar 

  • Spencer RJ, Møller N,Weare JH (1990) The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Mg-Cl-SO4-H20 system at temperatures below 25 °C. Geochim Cosmochim Acta 54:575–590

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: Chemical equilibria and rates in natural waters, 3rd edn. Wiley-Interscience, New York

    Google Scholar 

  • Sunda WG, Ferguson RL (1983) Sensitivity of natural bacterial communities to additions of copper and to cupric ion activity: A bioassay of copper complexation in seawater. In: Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in seawater. Plenum Press, New York, pp 871–891

    Google Scholar 

  • Sunda WG, Hanson AK (1987) Measurement of free cupric ion concentration in seawater by a ligand competition technique involving copper sorption onto C18 SEP-PAK cartridges. Limnol Oceanogr 32:537–551

    Article  CAS  Google Scholar 

  • Sunda WG, Klaveness D, Palumbo AV (1984) Bioassays of cupric ion activity and copper complexation. In: Kramer CJM, Duinker JC(eds) Complexation of trace metals in natural waters. Nijhoff/Junk, The Hague, The Netherlands, pp 399–409

    Google Scholar 

  • Thompson ME (1966) Magnesium in sea water: An electrode measurement. Science 153:866–867

    Article  CAS  Google Scholar 

  • Truesdale AH, Jones BF (1969) Ion association of natural brines. Chem Geol 4:1–62

    Google Scholar 

  • Turner DR, Whitfield M, Dickson AG (1981) The equilibrium speciation of dissolved components in freshwater and seawater at 25 °C and i atm pressure. Geochim Cosmochim Acta 45:855–881

    Article  CAS  Google Scholar 

  • Vazquez F, Zhang JZ, Millero FJ (1989) Effect of trace metals on the oxidation rates of H2S in seawater. Geophys Res Lett 16:1363–1366

    Article  Google Scholar 

  • Whitfield M (1975) The extension of chemical models for seawater to include trace components. Geochim Cosmochim Acta 39:1545–1557

    Article  CAS  Google Scholar 

  • Wu J, Luther GW (1995) Complexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration method and kinetic approach. Mar Chem 50:159–177

    Article  CAS  Google Scholar 

  • Yao W, Millero FJ (1995) The chemistry of the anoxic waters in the Framvaren Fjord, Norway. Aquatic Chem 1:53–88

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Millero, F., Pierrot, D. (2002). Speciation of Metals in Natural Waters. In: Gianguzza, A., Pelizzetti, E., Sammartano, S. (eds) Chemistry of Marine Water and Sediments. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04935-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04935-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07559-9

  • Online ISBN: 978-3-662-04935-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics