Skip to main content

Sedimentary Geochemistry of the Carbonate and Sulphide Systems and their Potential Influence on Toxic Metal Bioavailability

  • Chapter
Book cover Chemistry of Marine Water and Sediments

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

Two of the most biogeochemically dynamic and quantitatively important components of anoxic marine sediments are the carbonate and sulphide systems. They are in many ways remarkably similar (Fig. 7.1), as they are comprised of gases, are multiple species that are similarly dissolved, they form a variety of stable and metastable minerals, and they have widely used stable and radio isotopes. Both carbon and sulphur can occur in different redox states (Table 7.1), and because the dissolved systems include diprotic acids, they also exert a major influence on pH. Their dissolved concentrations can reach values of several millimoles. Carbonate and sulphide are thus generally regarded as the “master” components for controlling Eh-pH conditions in anoxic pore waters of marine sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller RC (1982) Carbonate dissolution in near-shore terrigenous muds: The role of physical and biological reworking. J Geol 90:79–95

    Article  CAS  Google Scholar 

  • Aller RC (1988) Benthic fauna and biogeochemical processes in marine sediments: The role of burrow structures. In: Blackburn TH, Sorensen J (eds) Nitrogen cycling in coastal marine environments. John Wiley and Sons, New York, pp 301–338

    Google Scholar 

  • Aller RC, Rude PD (1988) Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochim Cosmochim Acta 52:751–765

    Article  CAS  Google Scholar 

  • Arvidson RS, Morse JW (to be published) Controls on rates of sulfate reduction in chemosynthetic cold seep communities, Gulf of Mexico, USA. Geochim Cosmochim Acta Ben-Yaakov S (1973) pH buffering of pore water of recent anoxic sediments. Limnol Oceanogr 18:86–94

    Google Scholar 

  • Berner RA (1971) Principles of chemical sedimentology. McGraw-Hill, New York Berner RA (1982) Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance. Am J Sci 282:451–473

    Article  Google Scholar 

  • Berner RA (1984) Sedimentary pyrite formation: An update. Geochim Cosmochim Acta 48:605–615

    Article  CAS  Google Scholar 

  • Berner RA, Raiswell R (1984) C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12:365–368

    Article  CAS  Google Scholar 

  • Bernstein LD, Morse JW (1985) The steady-state calcium carbonate ion activity product of recent shallow water carbonate sediments in seawater. Mar Chem 15:311–326

    Article  CAS  Google Scholar 

  • Boudreau BP (1991) On a reactive continuum representation of organic matter diagenesis. Am J Sci 291:507–538

    Article  CAS  Google Scholar 

  • Canfield DE (1988) Sulfate reduction and the diagenesis of iron in marine sediments. PhD dissertation, Yale University Canfield DE (1989) Reactive iron in marine sediments. Geochim Cosmochim Acta 53:619–632

    Google Scholar 

  • Canfield DE (1994) Factors influencing organic carbon preservation in marine sediments. Chem Geol 114:315–329

    Article  CAS  Google Scholar 

  • Cooper DC, Morse JW (1998) Biogeochemical controls on trace metal cycling in anoxic marine sediments. Environ Sci Technol 32:327–330

    Article  CAS  Google Scholar 

  • Davison W (1991) The solubility of iron sulfides in synthetic and natural waters at ambient temperatures. Aquat Sci 53/54:309–329

    Article  Google Scholar 

  • Di Toro DM, Mahony JD, Hansen DJ, Scott KJ, Hicks MB, Mayr SM, Redmond MS (1990) Toxicity of cadmium in sediments: The role of acid volatile sulfide. Environ Sci Technol 9:1487–1502

    Google Scholar 

  • Di Toro DM, Mahony JD, Hansen DJ, Scott KJ, Carlson AR, Ankley GT (1992) Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ Sci Technol 26:96–101

    Article  Google Scholar 

  • Eldridge PM, Morse JW (2000) A diagenetic model for sediment-seagrass interactions. Mar Chem 70:89–104

    Article  Google Scholar 

  • Fossing H (1995) 35S-radiolabeling to probe biogeochemical cycling of sulfur. In: Vairavamurthy MA, Schoonen MAA (eds) Geochemical transformations of sedimentary sulfur. ACS Press, Washington, D.C. (ACS Symp. Ser 162, pp 348–364

    Chapter  Google Scholar 

  • Goldhaber MM, Kaplan IR (1974) The sulfur cycle. In: Goldberg ED (ed) The sea, vol V. John Wiley and Sons, New York, pp 596–657

    Google Scholar 

  • Hoehler TM, Alperin PI, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium. Global Biogeochem Cycles 8:451–463

    Article  CAS  Google Scholar 

  • Huerta-Diaz MA, Morse JW (1990) A quantitative method for determination of trace metal concentration in sedimentary pyrite. Mar Chem 29:119–144

    Article  CAS  Google Scholar 

  • Huerta-Diaz MA, Morse JW (1992) The pyritization of trace metals in anoxic marine sediments. Geochim Cosmochim Acta 56:2681–2702

    Article  CAS  Google Scholar 

  • Jorgensen BB (1978) A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. I. Measurement with radiotracer techniques. J Geomicrobiol 1:11–27

    Article  Google Scholar 

  • Jorgensen BB (1990) The thiosulfate shunt in the sulfur cycle of marine sediments. Science 249:152–154

    Article  CAS  Google Scholar 

  • Krauskopf K B (1956) Factors controlling the concentrations of thirteen rare metals in sea-water. Geochim Cosmochim Acta 9:1–32

    Article  CAS  Google Scholar 

  • Ku TCW, Walter LM, Coleman ML, Blake RE, Martini AM (1999) Coupling between sulfur recycling and syndepositional carbonate dissolution: Evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, USA. Geochim Cosmochim Acta 63:2529–2546

    Article  CAS  Google Scholar 

  • Lee BG, Groscom SB, Lee JS, Choi HJ, Koh CH, Luoma SN, Fisher NS (2000) Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments. Science 287:282–284

    Article  CAS  Google Scholar 

  • Lin S, Morse JW (1991) Sulfate reduction and iron sulfide mineral formation in Gulf of Mexico anoxic sediments. Am J Sci 291:55–89

    Article  CAS  Google Scholar 

  • Lord CJ III (1982) A selective and precise method for pyrite determination in sedimentary materials. J Sed Petrol 52:664–666

    Article  CAS  Google Scholar 

  • Luther GW III (1991) Pyrite synthesis via polysulfide compounds. Geochim Cosmochim Acta 55:2839–2849

    Article  CAS  Google Scholar 

  • Manheim FT (1961) A geochemical profile in the Baltic Sea. Geochim Cosmochim Acta 25:52–70

    Article  CAS  Google Scholar 

  • Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state. Global Biogeochem Cycles 7:927–957

    Article  CAS  Google Scholar 

  • Morse JW (1994) Interactions of trace metals with authigenic sulfide minerals: Implications for their bioavailability. Mar Chem 46:1–6

    Article  CAS  Google Scholar 

  • Morse JW, Berner, RA (1995) What controls sedimentary C/S ratios? Geochim Cosmochim Acta 59:1073–1077

    Article  CAS  Google Scholar 

  • Morse JW, Cornwell JC (1987) Analysis and distribution of iron sulfide minerals in recent anoxic marine sediments. Mar Chem 22:55–69

    Article  CAS  Google Scholar 

  • Morse JW, Emeis KC (1990) Controls on C/S ratios in hemipelagic sediments. Am J Sci 290:1117–1135

    Article  Google Scholar 

  • Morse JW, Luther GW III (1999) Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim Cosmochim Acta 63:3373–3379

    Article  CAS  Google Scholar 

  • Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates. Elsevier, Amsterdam

    Google Scholar 

  • Morse JW, Zullig JJ, Bernstein LD, Millero FJ, Milne P, Mucci A, Choppin GR (1985) Chemistry of calcium carbonate-rich shallow water sediments in the Bahamas. Am J Sci 285:147–185

    Article  CAS  Google Scholar 

  • Morse JW, Millero FJ, Cornwell J, Rickard D (1987) The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth-Sci Rev 24:1–42

    Article  CAS  Google Scholar 

  • Morse JW, Cornwell, JC, Arakaki T, Lin S, Huerta-Diaz MA (1992) Iron sulfide and carbonate mineral diagenesis in Baffin Bay, Texas. J Sed Petrol 62:671–680

    CAS  Google Scholar 

  • Morse JW, Presley BJ, Taylor RJ, Benoit G, Santschi P (1993) Trace metal chemistry of Galveston Bay: Water, sediments and biota. Mar Environ Res 36:1–37

    Article  CAS  Google Scholar 

  • Pamatmat M (1971) Oxygen consumption by the seabed. IV. Shipboard and laboratory measurements. Limnol Oceanogr 16:536–550

    Article  Google Scholar 

  • Pyzik AJ, Summer JE (1981) Sedimentary iron monosulfides: Kinetics and mechanism of formation. Geochim Cosmochim Acta 45:687–698

    Article  CAS  Google Scholar 

  • Raiswell R, Berner RA (1986) Pyrite and organic matter in Phanerozoic normal marine shales. Geochim Cosmochim Acta 50:1967–1976

    Article  CAS  Google Scholar 

  • Redfield AC, Ketchum BH, Rickard FA (1963) The influence of organisms on the composition of seawater. In: Hill MN (ed) The Sea, vol II. John Wiley and Sons, New York, pp 27–77

    Google Scholar 

  • Rickard DT (1975) Kinetics and mechanism of pyrite formation at low temperatures. Am J Sci 275:636–652

    Article  CAS  Google Scholar 

  • Rickard DT (1997) Kinetics of pyrite formation by the H2S oxidation of iron(II) monosulfide in aqueous solutions between 25 °C and 125 °C: The rate equation. Geochim Cosmochim Acta 61:115–134

    Article  CAS  Google Scholar 

  • Rickard DT, Luther GW III (1997) Kinetics of pyrite formation by the H25 oxidation of iron(II) monosulfide in aqueous solutions between 25 °C and 125 °C: The mechanism. Geochim Cosmochim Acta 61:135–147

    Article  CAS  Google Scholar 

  • Rickard DT, Schoonen MAA, Luther GW III (1995) Chemistry of iron sulfides in sedimentary environments. In: Vairavamurthy MA, Shoonen MAA (eds) Geochemical transformations of sedimentary sulfur. ACS Press, Washington, D.C. (ACS Symp. Ser 162, pp 168–193)

    Chapter  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic geochemistry. John Wiley and Sons, New York

    Google Scholar 

  • Thode HG (1991) Sulfur isotopes in nature and the environment: an overview. In: Krouse HR, Grinenko VA (eds) Stable isotopes: Natural and anthropogenic sulphur in the environment, Scope 43. John Wiley and Sons, New York, pp 1–26

    Google Scholar 

  • Volkov II, Rosanov AG (1983) The sulfur cycle in the oceans. In: Volkov II, Rosanov AG (eds) The global biogeochemical sulfur cycle, Scope 19. John Wiley and Sons, New York pp 357–447

    Google Scholar 

  • Walter LM, Burton EA(1990) Dissolution of recent platform carbonate sediments in marine pore fluids. Am J Sci 290:601–643

    Article  Google Scholar 

  • Walter LM, Bischof SA, Patterson WP, Lyons TW (1993) Dissolution and recrystallization in modern shelf carbonates: Evidence from pore water and solid phase chemistry. Phil Trans R Soc Lond A 344:27–36

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morse, J.W. (2002). Sedimentary Geochemistry of the Carbonate and Sulphide Systems and their Potential Influence on Toxic Metal Bioavailability. In: Gianguzza, A., Pelizzetti, E., Sammartano, S. (eds) Chemistry of Marine Water and Sediments. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04935-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04935-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07559-9

  • Online ISBN: 978-3-662-04935-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics