Acid-Base Equilibria in Saline Media: Application of the Mean Spherical Approximation

  • M. E. Sastre de Vicente
  • T. Vilariño
Part of the Environmental Science book series (ESE)


The simplest mathematical formulation of the hypothesis that chemical equilibrium exists in the bulk of a saline solution is based on the equilibrium constant, K T = K * Q(γ i ), where K T is the thermodynamic equilibrium constant, K * the stoichiometric constant and Q i ) the ratio of activity coefficients (γ i ) associated with the equilibrium. Studies on the effect of ionic strength on stoichiometric constants are based on modelling of the Q(γ i ) term (Sastre de Vicente 1997; Daniele et al.1997).


Ionic Strength Activity Coefficient Saline Medium Spherical Approximation Thermodynamic Equilibrium Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barthel JMG, Krienke H, Kunz W (1998) Physical chemistry of electrolyte Solutions. Steinkopff-Springer, DarmstadtGoogle Scholar
  2. Blum L (1975) Mean spherical model for asymmetric electrolytes. I. Method of solution. Mol Phys 30:1529–1535CrossRefGoogle Scholar
  3. Blum L, and Hoye JS (1977) Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function. J Phys Chem 81:1311–1316CrossRefGoogle Scholar
  4. Bondi A (1964) Van der Waals volumes and radii. J Phys Chem 68(3)441–451CrossRefGoogle Scholar
  5. Cartallier T, Turq P, Blum L, Condamine N (1992) Thermodynamics of ion association in the mean spherical approximation. J Phys Chem 96:6766–6772CrossRefGoogle Scholar
  6. Corti HR (1987) Prediction of activity coefficients in aqueous electrolyte mixtures using the mean spherical approximation. J Phys Chem 91:686–689CrossRefGoogle Scholar
  7. Daniele PG, De Stefano C, Foti C, Sammartano S (1997) The effect of ionic strength and ionic medium on the thermodynamic parameters of protonation and complex formation. Current Topics in Solution Chemistry 2:253–274Google Scholar
  8. De Robertis A, Foti C, Sammartano S, Gianguzza A (1997) Chemical speciation of some classes of low molecular weight ligands in seawater. In: Gianguzza A, Pelizzetti E, Sammartano S (eds.) Marine chemistry: An environmental analytical chemistry approach. Kluwer Academic Pub., Dordrecht, The NetherlandsGoogle Scholar
  9. Edsall JT (1943) Chap. 4. In: Cohn, Edsall (eds) Proteins, amino acids and peptides. Wiley, Reinhold, New YorkGoogle Scholar
  10. Fawcett WR, Tikanen AC (1996) Role of solvent permittivity in estimation of electrolyte activity coefficients on the basis of the mean spherical approximation. J Phys Chem 100:4251–4255CrossRefGoogle Scholar
  11. Fiol S, Brandariz I, Herrero R, Vilariño T, Sastre de Vicente M (1994) The protonation constants of glycine in NaCl at 25 °C based on the Pitzer and Scatchard models: Data analysis by ridge regression. Ber Bunsen Phys Chem 98(2):164–171CrossRefGoogle Scholar
  12. Friedman HL (1972) Lewis-Randall to McMillan-Mayer conversion for the thermodynamic solutions. J Solution Chem 1:387–431CrossRefGoogle Scholar
  13. Friedman HL (1985) A course in statistical mechanics. Prentice Hall, Englewood Cliffs, NJ, pp 137–156Google Scholar
  14. Grenthe I, Plyasunov A (1997) On the use of semiempirical electrolyte theories for the modeling of solution chemical data. Pure Appl Chem 69(5):951–958CrossRefGoogle Scholar
  15. Israelichvili J (1991) Intermolecular and surface forces. Academic Press, LondonGoogle Scholar
  16. Izatt RM, Oscarson JL, Gillespie SE, Cheng X, Wang P, Watt GD (1995) A calorimetric study of ligand interactions with protons and metal ions in the ioo to 400 °C range. Pure Appl Chem 67:543–549CrossRefGoogle Scholar
  17. Kettler RM, Palmer DA, Wesolowsky DJ (1995) Dissociation quotient of benzoic acid in aqueous solution chloride media to 250 °C. J Solution Chem 24(4):385–407CrossRefGoogle Scholar
  18. Kielland J (1937) Individual activity coefficients of ions in aqueous solutions. J Am Chem Soc 59:1675–1678CrossRefGoogle Scholar
  19. Lee LL (1988) Molecular thermodynamics of nonideal fluids. ButterworthsGoogle Scholar
  20. Long FA, McDevit WF (1952) Activity coefficients of nonelectrolyte solutes in aqueous salt solutions. Chem Rev 51:119–169CrossRefGoogle Scholar
  21. Marcus Y (1988) Ionic radii in aqueous solutions. Chem Rev 88:1475–1498CrossRefGoogle Scholar
  22. Millero FJ, Pierrot D (1998) A chemical equilibrium model for natural waters. Aquatic Geochem 4:153–199CrossRefGoogle Scholar
  23. Partanen JI, Juusola PM (2000) Comparison of different methods for calculation of the stoichiometric dissociation constant of acetic acid from results of potentiometric titrations at 298.15 K in aqueous sodium or potassium chloride solutions. Fluid Phase Equilibria 169:149–166CrossRefGoogle Scholar
  24. Pitzer KS (1973) Thermodynamics of electrolytes. I. Theoretical basis and general equations. J Phys Chem 77:268–277CrossRefGoogle Scholar
  25. Pitzer KS (1991) Ion interaction approach: Theory and data correlation. In: Pitzer KS (ed) Activity coefficients in electrolyte solutions, 2nd edn. CRC Press, Boca Raton, FL, pp 75–153Google Scholar
  26. Salvatore F, Ferri D, Palombari R (1986) Salt effect on the dissociation constant of acid-base indicators. J Solution Chem 15(5):423–431CrossRefGoogle Scholar
  27. Sanchez-Castro C, Blum L (1989) Explicit approximation for the unrestricted mean spherical approximation for ionic solutions. J Phys Chem 93:7478–7482CrossRefGoogle Scholar
  28. Sastre de Vicente ME (1997) Ionic strength effects on acid-base equilibria. A review. Current Topics in Solution Chemistry 2:157–181Google Scholar
  29. Sastre de Vicente ME, Vilariño T, Brandariz I (1998) Application of the mean spherical approximation to the study of ionic strength effects on acid-base equilibria. Recent Res Devel Phys Chem 2:489–500Google Scholar
  30. Simonin JP (1996) Study of experimental-to-McMillan-Mayer conversion of thermodynamic excess functions. J Chem Soc Faraday Trans 92:3519–3523CrossRefGoogle Scholar
  31. Simonin JP, Blum L (1996) Departures from ideality in pure ionic solutions using the mean spherical approximation. J Chem Soc Faraday Trans 92:1533–1536CrossRefGoogle Scholar
  32. Simonin JP, Blum L, Turq P (1996) Real ionic solutions in the mean spherical approximation. 1. Simple salts in the primitive model. J Phys Chem B 100:7704–7709CrossRefGoogle Scholar
  33. Sun T, Lenard JL, Teja AS (1994) A simplified mean spherical approximation for the prediction of the osmotic coefficients of aqueous electrolyte solutions. J Phys Chem 98:6870–6875CrossRefGoogle Scholar
  34. Taboada-Pan C, Brandariz I, Barriada JL, Vilariño T, Sastre de Vicente ME (2001) The salting coefficient and size of alquilamines in saline media at different temperatures: estimation from Pitzer equations and the mean spherical approximation. Fluid Phase Equilibria 180:313–325CrossRefGoogle Scholar
  35. Triolo R, Grigera JR, Blum L (1976) Simple electrolytes in the mean spherical approximation. J Phys Chem 80:1858–1861CrossRefGoogle Scholar
  36. Triolo R, Blum L, Floriano MA (1977) Simple electrolytes in the mean spherical approximation. 3. A workable model for aqueous solutions. J Chem Phys 67:5956–5959CrossRefGoogle Scholar
  37. Triolo R, Blum L, Floriano MA (1978) Simple electrolytes in the mean spherical approximation. 2. Study of a refined model. J Phys Chem 82:1368–1370CrossRefGoogle Scholar
  38. Turq P, Barthel J, Chemla M (1992) Transport, relaxation and kinetic processes in electrolyte solutions. Springer-Verlag, Berlin (Lectures Notes in Chemistry 57, pp 74–109)Google Scholar
  39. Vilariño T, Sastre de Vicente ME (1996) Protonation of glycine in saline media: Evaluation of the effect of the ionic strength by use of the mean spherical approximation. J Phys Chem 100:16378–16384CrossRefGoogle Scholar
  40. Vilariño T, Sastre de Vicente ME (1997) Theoretical calculation of the ionic strength dependence of the ionic product of water based on a mean spherical approximation. J Solution Chem 26 (9)9):833–846CrossRefGoogle Scholar
  41. Vilariño T, Sastre de Vicente ME (1999) The mean spherical approximation methodology applied to the acid-base equilibria of glycine in artificial seawater. Phys Chem Chem Phys 1:2453–2456CrossRefGoogle Scholar
  42. Vilariño T, Brandariz I, Fiol S, Armesto XL, Sastre de Vicente ME (1997) Study of the effect of ionic strength on the protonation equilibrium of various amino acids by using the mean spherical approximation. J Chem Soc Faraday Trans II 93:413–417CrossRefGoogle Scholar
  43. Vilariño T, Alonso P, Armesto XL, Rodriguez P, Sastre de Vicente ME (1998) Effect of ionic strength on the kinetics of the oxidation of ascorbic acid by hexacyanoferrate(III): Comparison between specific interaction theories and the mean spherical approximation. J Chem Res (S) 9:558–559CrossRefGoogle Scholar
  44. Waisman E, Lebowitz JL (1972) Mean spherical model integral equation for charged hard spheres. J Chem Phys 56:3086–3099CrossRefGoogle Scholar
  45. Whitfield M, Turner DR (1981) Sea water as an electrochemical medium. In: Whitfield M, Turner DR (eds) Marine chemistry. A practical introduction. John Wiley and Sons, Rochester, pp 3–66Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • M. E. Sastre de Vicente
  • T. Vilariño

There are no affiliations available

Personalised recommendations