The Formalization of Logic and the Issue of Meaning

  • Marie-José Durand-Richard


This paper is not directly concerned with musical logic, because I am unable to raise pertinent issues concerning it. But, as is clear from the introductory paper by François Nicolas, some parallelism is not lacking between musical logic and formalised logic, in terms of their ontological foundations and symbolical calculations. Thus, my purpose is to focus on the questions linked to the separation of a blind formal calculus from its possible interpretations, as they engage our present queries about meaning. I shall first present the specific point of view of an historian of science, a very different matter from our present knowledge of logic. Then, I shall define the periods I have chosen to show how these questions were dealt with historically. I shall go on to analyse how the relationship of logical calculus to the question of its meaning was viewed during these different periods.


Symbolical Calculus Plurivalent Logic Logical Calculus Ontological Foundation Symbolical Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babbage, Ch.: The Works of Ch. Babbage. 11 vols. Ed. by Campbell-Kelly, M. London: Pickering 1989Google Scholar
  2. 2.
    Boole, G. (1854): An Investigation of the Laws of Thought, on which are founded the mathematical Theories of Logic and Probabilities. London: Walton & Maberly 1992. Les lois de la pensée, trad. fr. S.B. Diagne. Paris: VrinGoogle Scholar
  3. 3.
    Cantor, G. (1932). Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Berlin: Springer. Ed. by E. Zermelo Réimp. Hildeshein: Olms 1962Google Scholar
  4. 4.
    Cavaillès, J.: Philosophie mathématique Paris: Hermann 1962MATHGoogle Scholar
  5. 5.
    Coffa, J.A.: The Semantic Tradition from Kant to Carnap. Cambridge: C.U.P. 1995Google Scholar
  6. 6.
    Corsi, P.: The heritage of Dugald Stewart: Oxford philosophy and the method of political economy. Nuncius, iii, 89–144 (1987)CrossRefGoogle Scholar
  7. 7.
    L. Courant: Opuscules et fragments inédits de Lb. Rééd. Publ. ENS. 1983, p. 97 et 143Google Scholar
  8. 8.
    De Rouilhan, P.: Les paradoxes de la représentation. Paris: Minuit 1988Google Scholar
  9. 9.
    Descartes, R. (1637): Discours de la Méthode. Œuvres et Lettres. Gallimard 1953Google Scholar
  10. 10.
    Duchesneau, F.: L’empirisme de Locke. La Haye: M. Nijhoff 1973Google Scholar
  11. 11.
    Durand M.J.(-Richard), : Genèse de l’Algèbre Symbolique en Angleterre: une Influence Possible de John Locke. Revue d’Histoire des Sciences, 43(2–3), 129–80 (1990)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Durand-Richard, M.J., Charles Babbage (1791–1871): De l’Ecole algébrique anglaise à la ‘machine analytique’. Mathématiques, Informatique et Sciences humaines 118, 5–31;Google Scholar
  13. 12.
    Durand-Richard, M.J., Charles Babbage (1791–1871): De l’Ecole algébrique anglaise à la ‘machine analytique’. Erratum, 120, 79–82 (1992)MathSciNetMATHGoogle Scholar
  14. 13.
    Durand-Richard, M.J.: L’Ecole Algébrique Anglaise: les conditions conceptuelles et institutionnelles d’un calcul symbolique comme fondement de la connaissance. In: Goldstein, C., Gray, J., Ritter, J. (eds.): L’Europe Mathematique — Mythes, histoires, identité. Mathematical Europe — Myth, History, Identity., pp. 445–77. Paris: Eds. M.S.H 1996Google Scholar
  15. 14.
    Prege, G. (1879): Begriffsschrift, a formula language, modeled upon that of arithmetic, for pure thought. In: Heijenoort, J. van: From Frege to Gödel: A Source Book in Mathematical Logic. Harvard Univ. Press 1967Google Scholar
  16. 15.
    Prege, G.: Nachgelassene Schriften. Hamburg: Meiner Verlag 1969. Ed. Hermes, H., Kambartel, F., Kaulbach, F.: “Booles rechnende Logic und Begriffsschrift (1880–81)”.Google Scholar
  17. 16.
    Frege, G.: Ecrits logiques et philosophiques, trad. Cl. Imbert. Paris: Points Seuil 1994Google Scholar
  18. 17.
    Geach, P., Black, M. (1952): Translations from the Philosophical Writings of G. Frege, Oxford, B. Blackwell: “Function and Concept”, 21–41; “On Sense and Reference” ; “Illustrative extracts from Frege’s review of Husserls ‘Philosophie der Arithmetik’“ (C.E.M. Pfeifer, Leipzig, 1891), Zeitschrift für Philosophie und phil. Kritik 13, 313–332 (1894)Google Scholar
  19. 18.
    Gödel, K. (1931): On formally undecidable propositions of Principia Mathe-matica and related Systems I. In: Heijenoort, J. van: From Frege to Gödel: A Source Book in Mathematical Logic. Harvard Univ. Press 1967Google Scholar
  20. 19.
    Gregory, D.F.: On the Real Nature of Symbolical Algebra. Transactions of the Royal Society of Edinburgh 14, 208–16 (1840)CrossRefGoogle Scholar
  21. 20.
    Gregory, D.F. (1839): On the solution of linear differential equations with constant coefficients. Cambridge Mathematical Journal 1, 2nd ed., 25–36 (1846)Google Scholar
  22. 21.
    Hamilton, W. 1833 (1852): (Anonyme), Recent Publications on Logical Science. Edinburgh Review 58(115), 194–238 (avr. 1833). Republié dans Discussions on Philosophy and Literature, Education and University Reform, Chiefly from the Edinburgh Review, pp. 116–174. London 1852Google Scholar
  23. 22.
    Hamilton, W.R. (1834): On conjugate functions, or algebraic couples, as tending to illustrate generally the doctrine of imaginary quantities, and as confirming the results of Mr. Graves respecting the existence of two independent integers in the complete expression of an imaginary logarithm. Transactions of the Royal Irish Academy 17, 203–422 (1834). Halberstam, H., Ingramn, R.E. (eds.): The Mathematical Papers of Sir William Rowan Hamilton, vol. 3: Algebra, pp. 3–96. Cambridge: Cambr. Univ. Press 1967Google Scholar
  24. 23.
    Heijenoort, J. van: From Frege to Gödel: A Source Book in Mathematical Logic. Harvard Univ. Press 1967MATHGoogle Scholar
  25. 24.
    Hilbert, D. (1926): Über das Unendliche. Mathematische Annalen 95, 161–90 (1926). Trad, frçse (in): Largeault, J.: Logique Mathématique, Textes, pp. 215–245. Paris: A. Colin 1972MathSciNetCrossRefGoogle Scholar
  26. 25.
    Hobbes, Th., 1904 (1651): Leviathan, or the Matter, Forme and Power of a Commonwealth, ecclesiasticall and civill. Ed. by Waller, A.R., Cambridge, CUPGoogle Scholar
  27. 26.
    Kline, M.: Mathematical Thought from Ancient to Modern Times. New York 1972MATHGoogle Scholar
  28. 27.
    Locke, J.: Essay on Human Understanding. 2nd ed. London 1690Google Scholar
  29. 28.
    Lovelace, A.A. (1843): Sketch of the Analytical Engine invented by Charles Babbage. In: Babbage, Works, 3, 89–170Google Scholar
  30. 29.
    Mac Farlane, A.: George Peacock (1791–1858). Lectures on ten British Mathematicians. New York 1916Google Scholar
  31. 30.
    Menabrea, L.F. (1842): Notions sur la machine analytique de M. Charles Babbage. Bibliothèque Universelle de Genève, t.xli, n° 82, octobre 1842, (in) Babbage, Ch. (1989) The Works of Ch. Babbage, Ed. Campbell-Kelly, London, Pickering, vol. 3Google Scholar
  32. 31.
    Mosconi, J.: Charles Babbage: vers une théorie du calcul mécanique. Revue d’Histoire des Sciences XXXV (l), 69–107 (1983)MathSciNetCrossRefGoogle Scholar
  33. 32.
    Newton, I.: The Mathematical Works of I. Newton, assembled by Whiteside, D.T. Vol. 2. New York, London: Johnson reprint corporation 1964. B.N.: 4R11517(3)Google Scholar
  34. 33.
    Peacock, G. (1830): Treatise of Algebra. 2 vols. Cambridge: Reed 1842–45Google Scholar
  35. 34.
    Peacock, G.: A Report on the recent progress and actual state of certain branches of analysis. Proceedings of the British Association for the Advancement of Science, pp. 185–351. London 1833Google Scholar
  36. 35.
    Peacock, G.: Report on the recent progress and actual state of certain branches of analysis. Cambridge 1834Google Scholar
  37. 36.
    Sinaceur, H.: Corps et Modèles. Paris: Vrin 1994Google Scholar
  38. 37.
    Stewart, D.: Elements of the philosophy of the human mind, Ld, 3 vols. 1792–1814–1827Google Scholar
  39. 38.
    Tarski, A.: Collected Papers. Ed. by Givant, S.R., McKenzie, R.N 4 vols. Birkhauser 1986MATHGoogle Scholar
  40. 39.
    Tarski, A. (1935): art. XVI: “Sur le concept de conséquence logique”. Logique, Sémantique, Métamathématique, t. 2, pp. 141–52. Paris: Armand Colin 1974Google Scholar
  41. 40.
    Tarski, A. (1935–36). art. XV: “La construction d’une sémantique scientifique”. Logique, Sémantique, Métamathématique, t. 2, pp. 131–39. Paris: Armand Colin 1974Google Scholar
  42. 41.
    Tarski, A. (1954): Contributions to the theory of models. I. Indagationes Mathematics, vol. 16, (Koninklijkle Nederlandse Akademie van Wetenschappen, Proc, Series A, Mathematical Sciences, vol. 57), pp. 572–81. Collected Papers, vol. 3, 517–25, p. 517.MathSciNetGoogle Scholar
  43. 42.
    Tarski, A.: Logique, sémantique, métamathématique, 1923–44. Trad, ss dir. Granger, G.G. Paris: Armand Colin 1972–1974Google Scholar
  44. 43.
    Whately, R.: Elements of Logic. London 1826. Also published in Encyclopœdia Metropolitana. London 1849Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Marie-José Durand-Richard

There are no affiliations available

Personalised recommendations