Computing Musical Sound

  • Jean-Claude Risset


The links between mathematics and music are ancient and profound. The numerology of musical intervals is an important part of the theory of music: it has also played a significant scientific role. Musical notation seems to have inspired the use of cartesian coordinates.

But the intervention of numbers within the human senses should not be taken for granted. In the Antiquity, while the pythagorician conception viewed harmony as ruled by numbers, Aristoxenus objected that the justification of music was in the ear of the listener rather than in some mathematical reason. Indeed, the mathematical rendering of the score can yield a mechanical and unmusical performance.

With the advent of the computer, it has become possible to produce sounds by calculating numbers. In 1957, Max Mathews could record sounds as strings of numbers, and also synthesize musical sounds with the help of a computer calculating numbers specifying sound waves. Beyond composing with sounds, synthesis permits to compose the sound itself, opening new resources for musicians. Digital sound has been popularized by compact discs, synthesizers, samplers, and also by the activity of institutions such as IRCAM. Mathematics is the pervasive tool of this new craft of musical sound, which permits to imitate acoustic instruments; to demonstrate auditory illusions and paradoxes; to create original textures and novel sound material; to set up new situations for real-time musical performance, thanks to the MIDI protocol of numerical description of musical events. However one must remember Aristoxenus’ lesson and take in account the specificities of perception.


Sine Wave Musical Notation Musical Sound Musical Event Musical Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arfib, D.: Digital synthesis of complex spectra by means of multiplication of non-linear distorted sine waves. Journal of the Audio Engineering Society 27, 757–768 (1979)Google Scholar
  2. 2.
    Arfib, D.: Analysis, transformation, and resynthesis of musical sounds with the help of a time-frequency representation. In: De Poli et al. (Cf. ci-dessous), pp. 87–118. 1991Google Scholar
  3. 3.
    Bachern, A.: Chroma fixations at the ends of the musical frequency scale. Journal of the Acoustical Society of America 20, 704–705 (1948)CrossRefGoogle Scholar
  4. 4.
    Barbaud, P.: La musique, discipline scientifique. Dunod 1968Google Scholar
  5. 5.
    Barrière, J.B. (ed.): Le timbre — une métaphore pour la composition. Paris: C. Bourgois & IRCAM 1991Google Scholar
  6. 6.
    Cadoz, C.: Les réalités virtuelles. Collection Dominos. Paris: Flammarion 1994Google Scholar
  7. 7.
    Cadoz, C., Luciani, A., Florens, J.L.: Responsive input devices and sound synthesis by simulation of instrumental mechanisms. Computer Music Journal 14(2), 47–51(1984)CrossRefGoogle Scholar
  8. 8.
    Charbonneau, G., Risset, J.C.: Circularité de hauteur sonore. Comptes Rendus de l’Académie des Sciences 277 (série B), 623–626 (1973)Google Scholar
  9. 9.
    Charbonneau, G., Risset, J.C.: Jugements relatifs de hauteur: schémas linéaires et hélicoïdaux. Comptes Rendus de l’Académie des Sciences 281 (série B), 289–292 (1975)Google Scholar
  10. 10.
    Chemillier, M., Duchamp, G.: Recherches et Gazette des mathématiciens I: 81, 27–39; II: 82, 26–30 (1999)Google Scholar
  11. 11.
    Chemillier, M., Pachet, F. (sous la direction de): Recherches et applications en informatique musicale. Paris: Hermès 1998Google Scholar
  12. 12.
    Chowning, J.: The synthesis of audio spectra by means of frequency modulation. Journal of the Audio Engineering Society 21, 526–534 (1973)Google Scholar
  13. 13.
    Chowning, J.: Music from machines: perceptual fusion and auditory perspective. In: Für György Ligeti — Die Referate des Ligeti-Kongresses Hamburg 1988. Laaber-Verlag 1991Google Scholar
  14. 14.
    Collectif: Nuova Atlantide — il continente delia musica elettronica 1900–1986. Biennale di Venezia 1986Google Scholar
  15. 15.
    Cook, P. (ed.): Music cognition and computerized sound. Cambridge, Mass.: MIT Press 1999Google Scholar
  16. 16.
    Cope, D.: Experiments in musical intelligence. Computer music and digital audio series, Vol. 12. Madison, WI: A-R Editions 1996Google Scholar
  17. 17.
    De Poli, G., Piccialli, A., Roads, C. (ed.): Representations of musical signals. Cambridge, Mass.: MIT Press 1991Google Scholar
  18. 18.
    Dodge, C., Bahn, C.: Musical fractals. Byte, june 1986, pp. 185–196. 1986Google Scholar
  19. 19.
    Dufourt, H.: Musique, pouvoir, écriture. Paris: C. Bourgois 1991Google Scholar
  20. 20.
    Dufourt, H.: Musique, mathésis et crises de l’antiquité à l’âge classique. In: Loi, M. (sous la direction de): Mathématiques et art, pp. 153–183. Paris: Hermann 1995Google Scholar
  21. 21.
    Escot, P.: The poetics of simple mathematics in music. Cambridge, Mass.: Publication Contact International 1999Google Scholar
  22. 22.
    Euler, L.: Tentamen novae theoriae musicae. Publications of St Petersburg Academy of Sciences 1739Google Scholar
  23. 23.
    Feichtinger, H., Dörfler, M. (ed.): Diderot Forum on Mathematics and Music. Wien: Österreichische Computer Gesellschaft 1999Google Scholar
  24. 24.
    Fucks, W.: Music analysis by mathematics, random sequences, music and accident. Gravesaner Blätter 23/24(6), 146–168 (1962)Google Scholar
  25. 25.
    Genevois, H., Orlarey, Y. (sous la direction de): Musique et mathématiques. Lyon: Grame/Aléas 1997Google Scholar
  26. 26.
    Grossmann, A., Morlet, J.: Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM Journal of Mathematical Analysis 15, 723–736 (1984)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Hartmann, W.H.: The frequency-domain grating. J. Acoust. Soc. Am. 78, 1421–1425 (1985)CrossRefGoogle Scholar
  28. 28.
    Hellegouarch, Y.: Scales. IV, 05 & V, 02. C. R. Soc. Roy. Math. Canada 1982/1983Google Scholar
  29. 29.
    Hellegouarch, Y.: L “essai d’une nouvelle théorie de la musique” de Leonhard Euler (1); Le romantisme des mathématiques, ou un regard oblique sur les mathématiques du XIXème siècle (2). In: Destins de l’art, desseins de la science, pp. 47–88 (1); pp. 371–390 (2). Université de Caen/CNRS (1991)Google Scholar
  30. 30.
    Hellegouarch, Y.: Gammes naturelles. Gazette des mathématiciens I: 81, 27–39; II: 82, 13–26 (1999)Google Scholar
  31. 31.
    Hiller, L.A., Isaacson, L.M.: Experimental Music. McGraw Hill 1959Google Scholar
  32. 32.
    Kircher, A.: Musurgia Universalis. New York: Olms 1650/1970Google Scholar
  33. 33.
    Licklider, J.C.R.: A duplex theory of pitch perception. Experientia (Suisse) 7, 128–133L (1951)CrossRefGoogle Scholar
  34. 34.
    Lusson, P.: Entendre le formel, comprendre la musique. In: Loi, M. (sous la direction de): Mathématiques et art, pp. 197–204. Paris: Hermann 1995Google Scholar
  35. 35.
    Loi, M. (sous la direction de): Mathématiques et art. Paris: Hermann 1995MATHGoogle Scholar
  36. 36.
    Mathews, M.V.: The technology of computer music. Cambridge, Mass.: MIT Press 1969Google Scholar
  37. 37.
    Mathews, M.V., Pierce, J.R.: Current directions in computer music research. (Avec un disque compact d’exemples sonores). Cambridge, Mass.: MIT Press 1989Google Scholar
  38. 38.
    Moorer, J.A.: Signal processing aspects of computer music. Proceedings of the Institute of Electric and Electronic Engineers 65, 1108–1135 (1977)CrossRefGoogle Scholar
  39. 39.
    Parzysz, B.: Musique et mathématique (avec “Gammes naturelles” par Yves Hellegouarch). Publication n° 53 de l’APMEP (Association des Professeurs de Mathématiques de l’Enseignement Public; 13 rue du Jura, 75013 Paris). 1983Google Scholar
  40. 40.
    Pascal, R.: Structure mathématique de groupe dans la composition musicale. In: Destins de l’art, desseins de la science — Actes du Colloque ADERHEM, Université de Caen, 24–29 octobre 1986 (publiés avec le concours du CNRS). 1991Google Scholar
  41. 41.
    Pierce, J.R.: Science, Art, and Communication. New York: Clarkson N. Potter 1968Google Scholar
  42. 42.
    Pierce, J.R.: Le son musical (avec exemples sonores). Paris: Pour la Science/ Belin 1984Google Scholar
  43. 43.
    Plomp, R.: Aspects of tone sensation. New York: Academic Press 1976Google Scholar
  44. 44.
    Reimer, E.: Johannes de Garlandia: De mensurabili musica. Beihefte zum Archiv für Musikwissenschaft 10, Vol. 1, p. 4. Wiesbaden 1972Google Scholar
  45. 45.
    Riotte, A.: Ecriture intuitive ou conception consciente? Création, formalismes, modèles, technologies. Musurgia 2(2), Paris (1995)Google Scholar
  46. 46.
    Risset, J.C.: An introductory catalog of computer-synthesized sounds (Réédité avec le disque compact Wergo “History of computer music”, 1992). Bell Laboratories 1969Google Scholar
  47. 47.
    Risset, J.C.: Musique, calcul secret? Critique 359 (numéro spécial “Mathématiques: heur et malheur”), 414–429 (1977)Google Scholar
  48. 48.
    Risset, J.C.: Stochastic processes in music and art. In: Stochastic processes in quantum theory ans statistical physics. New York: Springer 1982Google Scholar
  49. 49.
    Risset, J.C.: Pitch and rhythm paradoxes. Journal of the Acoustical Society of America 80, 961–962 (1986)CrossRefGoogle Scholar
  50. 50.
    Risset, J.C.: Symétrie et arts sonores. In: “La symétrie aujourd’hui” (entretiens avec Emile Noël), pp. 188–203. Paris: Editions du Seuil 1989Google Scholar
  51. 51.
    Risset, J.C.: Hasard et arts sonores. In: “Le hasard aujourd’hui” (entretiens avec Emile Noël), pp. 81–93. Paris: Editions du Seuil 1991Google Scholar
  52. 52.
    Risset, J.C.: Timbre analysis by synthesis: representations, imitations, and variants for musical composition. In: De Poli et al. (Cf. ci-dessus), pp. 7–43. 1991Google Scholar
  53. 53.
    Risset, J.C.: Moments newtoniens. Alliages 10 (1991), 38–41 (1992)Google Scholar
  54. 54.
    Risset, J.C.: Aujourd’hui le son musical se calcule. In: Loi, M. (sous la direction de): Mathématiques et art, pp. 210–233. Paris: Hermann 1995Google Scholar
  55. 55.
    Risset, J.C., Mathews, M.V.: Analysis of musical instrument tones. Physics Today 22(2), 23–30 (1969)CrossRefGoogle Scholar
  56. 56.
    Risset, J.C., Wessel, D.L.: Exploration of timbre by analysis and synthesis. In: Deutsch, D. (ed.): The psychology of music, pp. 113–169. Academic Press 1999CrossRefGoogle Scholar
  57. 57.
    Shepard, R.: Circularity of judgments of relative pitch. Journal of the Acoustical Society of America 36, 2346–2353 (1964)CrossRefGoogle Scholar
  58. 58.
    Sundberg, J. (ed.): Studies of music performance. Stockholm: Royal Academy of Music, Publication n° 39, 1983Google Scholar
  59. 59.
    Terhardt, E.: Pitch, consonance, and harmony. Journal of the Acoustical Society of America 55, 1061–1069 (1974)CrossRefGoogle Scholar
  60. 60.
    Wessel, D.L.: Timbre space as a musical control structure. Computer Music Journal 3(2), 45–52 (1979)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Wessel, D.L., Risset, J.C.: Les illusions auditives. Universalia (Encyclopedia Universalis), 167–171 (1979)Google Scholar
  62. 62.
    Weyl, H.: Symmetry. Princeton University Press 1952MATHGoogle Scholar
  63. 63.
    Xenakis, I.: Stochastic music. Gravesaner Blätter 23/24(6), 169–185 (1962)Google Scholar
  64. 64.
    Xenakis, L: Formalized music. Bloomington, Indiana: Indiana University Press 1971Google Scholar
  65. 65.
    Youngblood, J.: Style as information. J. of Music Theory 2, 24–29 (1958)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Jean-Claude Risset

There are no affiliations available

Personalised recommendations