Advertisement

Multivariate splines

  • Hartmut Prautzsch
  • Wolfgang Boehm
  • Marco Paluszny
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

De Boor’s algorithm is a generalization of de Casteljau’s and univariate B-splines are a generalization of Bernstein polynomials. Analogously, it is possible to generalize de Casteljau’s algorithm for multivariate polynomials to multivariate splines. The underlying basis functions of this generalized algorithm are simplex splines forming a partition of unity. These simplex splines are proper generalizations of the univariate B-splines and many properties of the univariate B-splines also hold for these multivariate simplex splines.

Keywords

Control Point Recurrence Relation Directional Derivative Recurrence Formula Polar Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Hartmut Prautzsch
    • 1
  • Wolfgang Boehm
    • 2
  • Marco Paluszny
    • 3
  1. 1.Geometrische DatenverarbeitungUniversität Karlruhe (TH)KarlsruheGermany
  2. 2.Angewandte Geometrie und ComputergraphikTechnische Universität BraunschweigBraunschweigGermany
  3. 3.Escuela de Matematicas, Facultad de CienciasUniversidad Central de VenezuelaCaracasVenezuela

Personalised recommendations