Skip to main content

Abstract

Rock metamorphism is always associated with processes and changes. Metamorphism reworks rocks in the earth’s crust and mantle. Typical effects of rock metamorphism include:

  • Minerals and mineral assemblages originally not present in the rock may form; the new mineral assemblages form at the expense of old ones, consequently older minerals may disappear (e.g., a metamorphic rock may originally contain Grt + Qtz + Sil; a metamorphic event transforms this rock into one that contains Crd (cordierite) in addition to the minerals previously present in the rock).

  • The relative abundance of minerals in a rock may systematically change and the new rock may have a different modal composition (metamorphism may increase the amount of Crd present in the rock and decrease the volume proportion of Grt + Qtz + Sil).

  • Metamorphic minerals may systematically change their composition (e.g., the XFe of Grt and Crd may simultaneously increase during metamorphism).

  • The structure of rocks in crust and mantle may be modified (e.g., randomly oriented sillimanite needles may be aligned parallel after the process)

  • The composition of the bulk rock may be altered during metamorphism by adding or removing components to or from the rock from a source/sink outside the volume of the rock considered (e.g., adding K2O dissolved in an aqueous solution to a Grt + Crd + Sill + Qtz rock may result in the formation of biotite).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abers GA (2000) Hydrated subducted crust at 100–250 km depth. Earth Planet Sci Lett 176: 323–330

    Article  Google Scholar 

  • Armstrong TR, Tracy RJ, Hames WE (1992) Contrasting styles of Taconian, eastern Acadian and western Acadian metamorphism, central and western New England. J Metamorph Geol 10: 415–426

    Article  Google Scholar 

  • Balling NP (1985) Thermal structure of the lithosphere beneath the Norwegian-Danish basin and the southern Baltic shield: a major transition zone. Terra Cognita 5: 377–378

    Google Scholar 

  • Banno S, Sakai C, Higashino T (1986) Pressure-temperature trajectory of the Sanbagawa metamorphism deduced from garnet zoning. Lithos 19: 51–63

    Article  Google Scholar 

  • Bell TH, Cuff C (1989) Dissolution, solution transfer, diffusion versus fluid flow and volume loss during deformation/metamorphism. J Metamorph Geol 7: 425–448

    Article  Google Scholar 

  • Bell TH, Hayward N (1991) Episodic metamorphic reactions during orogenesis: the control of deformation partitioning on reaction sites and reaction duration. J Metamorph Geol 9: 619–640

    Article  Google Scholar 

  • Bell TH, Mares VM (1999) Correlating deformation and metamorphism around orogenic arcs. Am Mineral 84: 1727–1740

    Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system: Na20-K2O-Ca0-Mg0-Fe0-Fe203-Al203 -Si02-Ti02-H2O–0O2. J Petrol 29: 445–522

    Article  Google Scholar 

  • Berman RG, Brown TH, Perkins EH (1987) GEO-CALC: software for calculation and display of pressure-temperature-composition phase diagrams. Am Mineral 72: 861

    Google Scholar 

  • Bickle MJ, McKenzie D (1987) The transport of heat and matter by fluids during metamor-phism. Contrib Mineral Petrol 95: 384–392

    Article  Google Scholar 

  • Brady JB (1988) The role of volatiles in the thermal history of metamorphic terranes. J Pe-trol 29: 1187–1213

    Article  Google Scholar 

  • Brodie KH, Rutter EH (1985) On the relationship between deformation and metamorphism with special reference to the behaviour of basic rocks. In: Advances in physical geochem-istry. Springer, Berlin Heidelberg New York, pp 138–179

    Google Scholar 

  • Brown GC, Mussett AE (1981) The inaccessible earth. Allen and Unwin, London, p 152, Fig. 8. 15. 235 pp

    Google Scholar 

  • Brown TH, Berman RG, Perkins EH (1988) GEO-CALC: software package for calculation and display of pressure-temperature-composition phase diagrams using an IBM or com-patible computer. Comput Geosci 14: 279–289

    Article  Google Scholar 

  • Burnham CW, Holloway JR, Davis NF (1969) Thermodynamic properties of water to 1000 ‘C and 10 000 bars. Geol Soc Am Spec Pap 132: 96

    Google Scholar 

  • Cermak V, Rybach L (1987) Terrestrial heat flow and the lithosphere structure. Terra Cogni-ta 7: 685–687

    Google Scholar 

  • Chapman DS (1986) Thermal gradients in the continental crust. In: Dawson JB, Carswell DA, Hall J, Wedepohl KH (eds) The nature of the lower continental crust. Geological So-ciety Special Publication. Blackwell, London, pp 63–70

    Google Scholar 

  • Chattenee ND (1991) Applied mineralogical thermodynamics. Springer, Berlin Heidelberg New York, 321 pp

    Google Scholar 

  • Clark SP (1966) Handbook of physical constants. Geological Society of America Memoir, Washington, DC, 587 pp

    Google Scholar 

  • Connolly JAD (1990) Multivariable phase diagrams: an algorithm based on generalized ther-modynamics. Am J Sci 290: 666–718

    Article  Google Scholar 

  • Connolly JAD, Kerrick DM (1987) An algorithm and computer program for calculating computer phase diagrams. CALPHAD 11: 1–55

    Article  Google Scholar 

  • Dav-y P, Gillet P (1986) The stacking of thrust slices in collision zones and its thermal con-sequences. Tectonics 5: 913–929

    Article  Google Scholar 

  • Day HW (1972) Geometrical analysis of phase equilibria in ternary system of six phases. Am J Sci 272: 711–734

    Article  Google Scholar 

  • Day HW, Chamberlain CP (1989) Implications of thermal and baric structure for controls on metamorphism, northern New England, USA. In: Daly S, Cliff RA, Yardley BWD (eds) Evolution of metamorphic belts. Geological Society Special Publication. Blackwell, London, pp 215–222

    Google Scholar 

  • de Capitani C, Brown TH (1987) The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochim Cosmochim Acta 51: 2639–2652

    Article  Google Scholar 

  • Denbigh K (1971) The principles of chemical equilibrium. Cambridge University Press, London, 494 pp

    Google Scholar 

  • Durney DW (1972) Solution transfer, an important geological deformation mechanism. Na-ture 235: 315–317

    Google Scholar 

  • Dyar MD, Guidotti CV, Holdaway MJ, Colucci M (1993) Nonstoichiometric hydrogen con-tents in common rock-forming hydroxyl silicates. Geochim Cosmochim Acta 57: 2913–2918

    Article  Google Scholar 

  • England PC, Richardson SW (1977) The influence of erosion upon the mineral facies of rocks from different metamorphic environments. J Geol Soc Lond 134: 201–213

    Article  Google Scholar 

  • England PC, Thompson AB (1984) Pressure-temperature-time paths of regional metamor-phism. I. Heat transfer during the evolution of regions of thickened continental crust. J Petrol 25: 894–928

    Google Scholar 

  • England PC, Thompson AB (1986) Some thermal and tectonic models for crustal melting in continental collision zones. In: Coward MP, Ries AC (eds) Collision tectonics. Geological Society Special Publication. Blackwell, London, pp 83–94

    Google Scholar 

  • Ernst WG (1976) Petrologic phase equilibria. Freeman, San Francisco, 333 pp

    Google Scholar 

  • Eugster HP (1977) Compositions and thermodynamics of metamorphic solutions. In: Fraser DG (ed) Thermodynamics in geology. Reidel, Dordrecht, pp 183–202

    Chapter  Google Scholar 

  • Eugster HP (1986) Minerals in hot water. Am Mineral 71: 655–673

    Google Scholar 

  • Eugster HP, Gunter WD (1981) The compositions of supercritical metamorphic solutions. Bull Mineral 104: 817–826

    Google Scholar 

  • Ferry JM (1980) A case study of the amount and distribution of heat and fluid during metamorphism. Contrib Mineral Petrol 71: 373–385

    Article  Google Scholar 

  • Ferry JM (1982) Characterization of metamorphism through mineral equilibria. Reviews in mineralogy, vol 10. Mineralogical Society of America, Washington, DC, 397 pp

    Google Scholar 

  • Ferry JM (1983) Application of the reaction progress variable in metamorphic petrology. J Petrol 24: 343–376

    Article  Google Scholar 

  • Ferry JM (2000) Patterns of mineral occurrence in metamorphic rocks. Am Mineral 85: 1573–1588

    Google Scholar 

  • Fletcher P (1993) Chemical thermodynamics for earth scientists. Longman Scientific and Technical, Essex, 464 pp

    Google Scholar 

  • Fraser DG (1977) Thermodynamics in geology. NATO Advanced Study Institutes Series, vol 30. Reidel, Dordrecht, 410 pp

    Google Scholar 

  • Froese E (1977) Oxidation and sulphidation reactions. In: Greenwood HJ (ed) Application of thermodynamics to petrology and ore deposits. Short course 2. Mineralogical Association of Canada, Vancouver, pp 84–98

    Google Scholar 

  • Frost BR (1988) A review of graphite-sulfide-oxide-silicate equilibria in metamorphic rocks. Rend Soc Ital Mineral Petrol 43: 25–40

    Google Scholar 

  • Frost BR, Tracy RJ (1991) P-T paths from zoned garnets: some minimum criteria. Am J Sci 291: 917–939

    Article  Google Scholar 

  • Fyfe WS, Turner FJ, Verhoogen J (1958)) Effect of temperature on equilibrium entropy of solids. In: Metamorphic reactions and metamorphic facies. Geol Soc Am Bull 73: 25–34

    Google Scholar 

  • Garrels RM, Christ CL (1965) Solutions, minerals and equilibria. Freeman and Cooper, San Francisco, 450 pp

    Google Scholar 

  • Gibbs JW (1878) On the equilibrium of heterogeneous substances. Am J Sci (Trans Conn Acad) 16: 343–524

    Google Scholar 

  • Gibbs JW (1906) The scientific papers of J. Willard Gibbs. Thermodynamics. Longmans and Greed, London

    Google Scholar 

  • Goldstein RH (2001) Fluid inclusions in sedimentary and diagenetic systems. Lithos 55: 159193

    Google Scholar 

  • Greenwood HJ (1975) Buffering of pore fluids by metamorphic reactions. Am J Sci 275: 573594

    Google Scholar 

  • Greenwood HJ (ed) (1977) Application of thermodynamics to petrology and ore deposits. Short course 2. Mineralogical Association of Canada, Vancouver, 230 pp

    Google Scholar 

  • Guggenheim EA (1986) Thermodynamics. North-Holland Physics Publ, Amsterdam, 390 pp Harker A ( 1932 ) Metamorphism. A study of the transformation of rock masses. Methuen, London

    Google Scholar 

  • Harte B, Dempster TJ (1987) Regional metamorphic zones: tectonic controls. Philos Trans R Soc Lond A 321: 105–127

    Article  Google Scholar 

  • Helgeson HC, Kirkham DH (1974) Theoretical prediction of the thermodynamic behaviour of aqueous electrolytes at high pressures and temperatures. I. Summary of the thermodynamic/electrostatic properties of the solvent. Am J Sci 274: 1089–1098

    Google Scholar 

  • Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278-A: 229 pp

    Google Scholar 

  • Helgeson HC, Kirkham DH, Flowers GC (1981) Theoretical prediction of the thermodynamic behaviour of aqueous electrolytes at high pressures and temperatures. IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 C and 5 kb. Am J Sci 281: 1249–1516

    Article  Google Scholar 

  • Holland TJB, Powell R (1985) An internally consistent dataset with uncertainties and correlations. 2. Data and results. J Metamorph Geol 3: 343–370

    Google Scholar 

  • Holland TJB, Powell R (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O-Na20-CaO-MgOMn0-FeO-Fe203-Al2O3-Ti02-SiO2-C-H2–02. J Metamorph Geol 8: 89–124

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally-consistent thermodynamic dataset for phases of petrological interest. J Metamorph Geol 16: 309–343

    Article  Google Scholar 

  • Jamieson RA, Beaumont C, Hamilton J, Fullsack P (1996) Tectonic assembly of inverted metamorphic sequences. Geology 24: 839–842

    Article  Google Scholar 

  • Johnson JW, Oelkers EH, Helgeson HC (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000°C. Comput Geosci 18: 899–947

    Article  Google Scholar 

  • Jones KA, Brown M (1990) High-temperature ‘clockwise’ P-T paths and melting in the de-velopment of regional migmatites: an example from southern Brittany, France. J Meta-morph Geol 8: 551–578

    Google Scholar 

  • Karabinos P, Ketcham R (1988) Thermal structure of active thrust belts. J Metamorph Geol 6: 559–570

    Article  Google Scholar 

  • Kretz R (1991) A note on transfer reactions. Can Mineral 29: 823–832

    Google Scholar 

  • Krogh EJ, Oh CW, Liou JG (1994) Polyphase and anticlockwise p-T evolution for Franciscan eclogites and blueschists from Jenner, California, USA. J Metamorph Geol 12: 121–134

    Google Scholar 

  • Kukkonen IT, CermĂ k V, Hurtig E (1993) Vertical variation of heat flow density in the continental crust. Terra 5: 389–398

    Google Scholar 

  • Lasaga AC, Jianxin J (1995) Thermal history of rocks: P-T-t paths from geospeedometry, petrologic data, and inverse theory techniques. Am J Sci 295: 697–741

    Google Scholar 

  • Lasaga AC, Kirkpatrick RJ (1981) Kinetics of geochemical processes. Reviews in mineralogy. Mineralogical Society of America, Washington, DC, 398 pp

    Google Scholar 

  • Lasaga AC, Rye DM (1993) Fluid flow and chemical reaction kinetics in metamorphic sys-tems. Am J Sci 293: 361–404

    Article  Google Scholar 

  • Lasaga AC, Liittge A, Rye DM, Bolton EW (2000) Dynamic treatment of invariant and uni-variant reactions in metamorphic systems. Am J Sci 300: 173–221

    Article  Google Scholar 

  • Lenardic A, Kaula WM (1995) Mantle dynamics and the heat flow into the Earth’s conti-nents. Nature 378: 709–711

    Article  Google Scholar 

  • Lewis GN, Randall M (1961) Thermodynamics (revised by Pitzer KS, Brewer L). McGraw-Hill, New York, 723 pp

    Google Scholar 

  • Lux DR, DeYoreo JJ, Guidotti CV, Deker ER (1986) Role of plutonism in low-pressure meta-morphic belt formation. Nature 323: 794–797

    Article  Google Scholar 

  • Macfarlane AM (1995) An evaluation of the inverted metamorphic gradient at Langtang Na-tional Park, central Nepal Himalaya. J Metamorph Geol 13: 595–612

    Article  Google Scholar 

  • Manning CE, Ingebritsen SE (1999) Permeability of the continental crust: implications of geothermal data and metamorphic systems. Rev Geophys 37: 127–150

    Article  Google Scholar 

  • Miyashiro A (1961) Evolution of metamorphic belts. J Petrol 2: 277–311

    Article  Google Scholar 

  • Miyashiro A (1964) Oxidation and reduction in the earth’s crust, with special reference to the role of graphite. Geochim Cosmochim Acta 28: 717–729

    Article  Google Scholar 

  • Moore WL (1972) Physical chemistry. Longman, London, 977 pp

    Google Scholar 

  • Miintener 0, Hermann J, Trommsdorff V (2000) Cooling history and exhumation of lowercrustal granulite and upper mantle ( Malenco, eastern central Alps ). J Petrol 41: 175–200

    Google Scholar 

  • Nisbet EG, Fowler CMR (1988) Heat, metamorphism and tectonics. Short course 14. Mineralogical Association of Canada, St. John’s, Newfoundland, 319 pp

    Google Scholar 

  • Norris RJ, Henley RW (1976) Dewatering of a metamorphic pile. Geology 4: 333–306

    Article  Google Scholar 

  • Norton D, Knight J (1977) Transport phenomena in hydrothermal systems: cooling plutons. Am J Sci 277: 937–981

    Article  Google Scholar 

  • Olsen KH (1995) Continental rifts: evolution, structure, tectonics. Elsevier, Amsterdam, 466 pp

    Google Scholar 

  • Oxburgh ER (1974) The plain man’s guide to plate tectonics. Proc Geol Assoc 85: 299–358

    Article  Google Scholar 

  • Oxburgh ER, England PC (1980) Heat flow and the metamorphic evolution of the Eastern Alps. Eclogae Geol Helv 73: 379–398

    Google Scholar 

  • Oxburgh ER, Turcotte DL (1971) Origin of paired metamorphic belts and crustal dilation in island arc regions. J Geophys Res 76: 1315–1327

    Article  Google Scholar 

  • Oxburgh ER, Turcotte DL (1974) Thermal gradients and regional metamorphism in overs-thrust terrains with special reference to the Eastern Alps. Schweiz Mineral Petrogr Mitt 54: 642–662

    Google Scholar 

  • Peacock SM (1990) Numerical simulation of metamorphic pressure-temperature-time paths and fluid production in subducting slabs. Tectonics 9: 1197–1211

    Article  Google Scholar 

  • Perkins D, Essene EJ, Wall VJ (1987) THERMO: a computer program for calculation of mixed-volatile equilibria. Am Mineral 72: 446–447

    Google Scholar 

  • Petrini K, Podladchikov Y (2000) Lithospheric pressure-depth relationship in compressive regions of thickened crust. J Metamorph Geol 18: 67–77

    Article  Google Scholar 

  • Platt JP (1986) Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geol Soc Am Bull 97: 1037–1053

    Article  Google Scholar 

  • Platt JP, England PC (1993) Convective removal of lithosphere beneath mountain belts: thermal and mechanical consequences. Am J Sci 293: 307–336

    Google Scholar 

  • Powell R (1978) Equilibrium thermodynamics in petrology, an introduction. Harper and Row, New York, 284 pp

    Google Scholar 

  • Powell R, Holland TJB (1985) An internally consistent dataset with uncertainties and correlations. 1. Methods and a worked example. J Metamorph Geol 3: 327–342

    Google Scholar 

  • Powell R, Holland TJB (1988) An internally consistent dataset with uncertainties and correlations. 3. Applications to geobarometry, worked examples and a computer program. J Metamorph Geol 6: 173–204

    Google Scholar 

  • Powell R, Tim Holland T (2001) Course notes for THERMOCALC workshop 2001: calculating metamorphic phase equilibria: on CD-ROM

    Google Scholar 

  • Prigogine I (1955) Thermodynamics of irreversible processes. Wiley, New York, 147 pp

    Google Scholar 

  • Ramberg H (1952) The origin of metamorphic and metasomatic rocks. Univ Chicago Press, Chicago, 317 pp

    Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. US Geol Sury Bull 1452: 1–456

    Google Scholar 

  • Robinson D (1987) Transition from diagenesis to metamorphism in extensional and collision settings. Geology 15: 866–869

    Article  Google Scholar 

  • Rubenach MJ (1992) Proterozoic low-pressure/high-temperature metamorphism and an anti-clockwise P-T-t path for the Hazeldene area, Mount Isa Inlier, Queensland, Australia. J Metamorph Geol 10: 333–346

    Article  Google Scholar 

  • Saxena S, Ganguly J (1987) Mixtures and mineral reactions. Minerals and rocks. Springer, Berlin Heidelberg New York, 260 pp

    Google Scholar 

  • Sclater JG, Jaupart C, Galson D (1980) The heat flow through oceanic and continental crust and the heat loss of the Earth. Rev Geophys Space Phys 18: 269–311

    Article  Google Scholar 

  • Seyfried WE (1987) Experimental and theoretical constraints on hydrothermal alteration processes at mid-ocean ridges. Annu Rev Earth Planet Sci Lett 15: 317–335

    Article  Google Scholar 

  • Skippen GB, Carmichael DM (1977) Mixed-volatile equilibria. In: Greenwood HJ (ed) Application of thermodynamics to petrology and ore deposits. Short course. Mineralogical Association of Canada, Vancouver, pp 109–125

    Google Scholar 

  • Skippen GB, Marshall DD (1991) The metamorphism of granulites and devolatilization of the lithosphere. Can Mineral 29: 693–706

    Google Scholar 

  • Sleep NH (1979) A thermal constraint on the duration of folding with reference to Acadian geology, New England, USA. J Geol 87: 583–589

    Article  Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time path. Mineralogical Society of America, Washington, DC, 824 pp

    Google Scholar 

  • Spear FS (1999) Real-time AFM diagrams on your Macintosh. Geol Mater Res 1: 1–18

    Google Scholar 

  • Spear FS, Peacock SM (1989) Metamorphic pressure-temperature-time paths. Short course in geology, vol 7. American Geophysical Union, Washington, DC, 102 pp

    Google Scholar 

  • Spear FS, Rumble D III, Ferry JM (1982) Linear algebraic manipulation of n-dimensional composition space, In: Ferry JM (ed) Characterization of metamorphism through mineral equilibria. Reviews in mineralogy. Mineralogical Society of America, Washington, DC, pp 53–104

    Google Scholar 

  • Spear FS, Selverstone J, Hickmont D, Crowley P, Hodges KV (1984) P-T paths from garnet zoning: a new technique for deciphering tectonic processes in crystalline terranes. Geology 12: 87–90

    Article  Google Scholar 

  • Spear FS, Peacock SM, Kohn MJ, Florence FP, Menard T (1991) Computer programs for petrologic P-T-t path calculations. Am Mineral 76: 2009–2012

    Google Scholar 

  • Spiess R, Bell TH (1996) Microstructural controls on sites of metamorphic reaction: a case study of the inter-relationship between deformation and metamorphism. Eur J Mineral 1: 165–186

    Google Scholar 

  • Spooner ETC, Fyfe WS (1973) Sub-sea-floor metamorphism, heat and mass transfer. Contrib Mineral Petrol 42: 287–304

    Article  Google Scholar 

  • Stephenson BJ, Waters DJ, Searle MP (2000) Inverted metamorphism and the Main Central Thrust: field relations and thermobarometric constraints from the Kishtwar Window, NW Indian Himalaya. J Metamorph Geol 18: 571–590

    Google Scholar 

  • Stern T, Smith EGC, Davey FJ, Muirhead KJ (1987) Crustal and upper mantle structure of the northwestern North Island, New Zealand, from seismic refraction data. Geophys J R Astron Soc 91: 913–936

    Google Scholar 

  • Stull DR, Prophet H (1971) JANAF thermochemical tables. Matl Standards Ref Data Ser. Na-tional Bureau of Standards, Washington, DC, 1141 pp

    Google Scholar 

  • Thompson AB (1981) The pressure-temperature (P,T) plane viewed by geophysicists and petrologists. Terra Cognita 1: 11–20

    Google Scholar 

  • Thompson AB, England PC (1984) Pressure-temperature-time paths of regional metamor-phism. II. Their inference and interpretation using mineral assemblages in metamorphic rocks. J Petrol 25: 929–955

    Google Scholar 

  • Thompson AB, Ridley JR (1987) Pressure-temperature-time ( P-T-t) histories of orogenic belts. Philos Trans R Soc Lond A 321: 27–45

    Google Scholar 

  • Thompson AB, Tracy RJ, Lyttle PT, Thompson JB (1977) Prograde reaction histories de-duced from compositional zonation and mineral inclusions in garnet from the Gassetts schist, Vermont. Am J Sci 277: 1152–1167

    Google Scholar 

  • Thompson JB (1982a) Composition space; an algebraic and geometric approach. In: Ferry JM (ed) Characterization of metamorphism through mineral equilibria. Reviews in mineralogy. Mineralogical Society of America, Washington, DC, pp 1–31

    Google Scholar 

  • Thompson JB (1982b) Reaction space; an algebraic and geometric approach. In: Ferry JM (ed) Characterization of metamorphism through mineral equilibria. Reviews in mineral-ogy. Mineralogical Society of America, Washington, DC, pp 33–52

    Google Scholar 

  • Touret JLR (2001) Fluids in metamorphic rocks. Lithos 55: 1–25

    Article  Google Scholar 

  • Vernon RH (1996) Problems with inferring P-T-t paths in low-P granulite facies rocks. J Metamorph Geol 14: 143–153

    Article  Google Scholar 

  • Vigneresse IL (1988) Heat flow, heat production and crustal structure in peri-Atlantic re-gions. Earth Planet Sci Lett 87: 303–312

    Article  Google Scholar 

  • Vigneresse JL, Cuney M (1991) What can we learn about crustal structure from thermal data? Terra Nova 3: 28–34

    Article  Google Scholar 

  • Walther JV, Orville PM (1982) Rates of metamorphism and volatile production and trans-port in regional metamorphism. Contrib Mineral Petrol 79: 252–257

    Article  Google Scholar 

  • Whitney DL, Lang HM, Ghent ED (1995) Quantitative determination of metamorphic reac-tion history: mass balance relations between groundmass and mineral inclusion assem-blages in metamorphic rocks. Contrib Mineral Petrol 120: 404–411

    Article  Google Scholar 

  • Wickham S, Oxburgh ER (1985) Continental rifts as a setting for regional metamorphism. Nature 318: 330–333

    Article  Google Scholar 

  • Winslow DM, Bodnar RJ, Tracy RJ (1994) Fluid inclusion evidence for an anticlockwise metamorphic P-T path in central Massachusetts. J Metamorph Geol 12: 361–371

    Article  Google Scholar 

  • Wood BJ, Fraser DG (1976) Elementary thermodynamics for geologists. Oxford Univ Press, Oxford, 303 pp

    Google Scholar 

  • Wood BJ, Walther JV (1984) Rates of hydrothermal reactions. Science 222: 413–415

    Article  Google Scholar 

  • Zen E-A (1966) Construction of pressure-temperature diagrams for multi-component systems after the method of Schreinemakers–a geometrical approach. US Geol Surv Bull 1225: 1–56

    Google Scholar 

  • Zwart HJ (1962) On the determination of polymetamorphic mineral associations, and its application to the Bosot area (central Pyrenees). Geol Rundsch 52: 38–65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bucher, K., Frey, M. (2002). Metamorphic Processes. In: Petrogenesis of Metamorphic Rocks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04914-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04914-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04916-7

  • Online ISBN: 978-3-662-04914-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics