Skip to main content

Metamorphism of Granitoid Rocks

  • Chapter
Petrogenesis of Metamorphic Rocks
  • 1042 Accesses

Abstract

Granitoid rocks comprise granite, alkali-feldspar granite, granodiorite and tonalite. They constitute the largest portion of the continental crust. Granitoid gneisses, commonly migmatites, are in fact the dominant rock type of the continents. Because the main constituents — alkali-feldspar, plagioclase, quartz, biotite, muscovite, hornblende — are found over a wide range of P-T conditions, this rock group is not a very useful indicator of metamorphic grade and is therefore largely neglected in textbooks on metamorphic petrology. Unlike wet sedimentary rocks, granitoid rocks will enter the metamorphic realm in a predominantly dry state. In order to start metamorphic reactions some hydration is necessary. The access of a water-rich fluid will be facilitated by tectonic activity. Also, in the absence of penetrative deformation, granitoid rocks retain remarkably well their original igneous structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A1Dahan AA (1989) The paragenesis of pumpellyite in granitic rocks from the Siljan area, central Sweden. Neues Jahrb Mineral Monatsh 367–383

    Google Scholar 

  • Ashworth JR (1985) Migmatites. Blackie, Glasgow, 301 pp

    Book  Google Scholar 

  • Bambauer HU (1984) Das Einfallen der Mikroklin/Sanidin-Isogradenfläche in den Schweizer Zentral-Alpen. Schweiz Mineral Petrogr Mitt 64: 288–289

    Google Scholar 

  • Bambauer HU, Bernotat WH (1982) The microcline/sanidine transformation isograd in metamorphic regions. I. Composition and structural state of alkali feldspars from granitoid rocks of two N-S traverses across the Aar massif and Gotthard “massif”, Swiss Alps. Schweiz Mineral Petrogr Mitt 62: 185–230

    Google Scholar 

  • Bea F (1989) A method for modelling mass balance in partial melting and anatectic leucosome segregation. J Metamorph Geol 7: 619–628

    Article  Google Scholar 

  • Bernotat WH, Bambauer HU (1982) The microcline/sanidine transformation isograd in metamorphic regions. II. The region of Lepontine metamorphism, central Swiss Alps. Schweiz Mineral Petrogr Mitt 62: 231–244

    Google Scholar 

  • Bernotat WH, Morteani G (1982) The microcline/sanidine transformation isograd in metamorphic regions: Western Tauern window and Merano-Mules-Anterselva complex (eastern Alps). Am Mineral 67: 43–53

    Google Scholar 

  • Bohlen SR, Boettcher AL, Wall, VJ, Clemens JD (1983) Stability of phlogopite-quartz and sanidine-quartz: a model for melting in the lower crust. Contrib Mineral Petrol 83: 270–277

    Article  Google Scholar 

  • Compagnoni R, Maffeo B (1973) Jadeite-bearing metagranites 1.s., related rocks in the Mount Mucrone area ( Sesia-Lanzo zone, western Italian Alps ). Schweiz Mineral Petrogr Mitt 53: 355–378

    Google Scholar 

  • Engel AEJ, Engel CE (1958) Progressive metamorphism and granitization of the major para-gneiss, northwest Adirondack mountains, New York, part 1. Geol Soc Am Bull 69: 1369–1414

    Article  Google Scholar 

  • Evans BW, Patrick BE (1987) Phengite-3T in high-pressure metamorphosed granitic ortho-gneisses, Seward Peninsula, Alaska. Can Mineral 25: 141–158

    Google Scholar 

  • Ferry JM (1979) Reaction mechanism, physical conditions, and mass transfer during hydro-thermal alteration of mica and feldspar in granitic rocks from south-central Maine, USA. Contrib Mineral Petrol 68: 125–139

    Article  Google Scholar 

  • Finger F, Clemens JD (1995) Migmatization and “secondary” granitic magmas: effects of emplacement and crystallization of “primary” granitoids in southern Bohemia, Austria. Contrib Mineral Petrol 120: 311–326

    Google Scholar 

  • Franz L, Harlov DE (1998) High-grade K-feldspar veining in granulites from the Ivrea-Ver-bano Zone, northern Italy: fluid flow in the lower crust and implications for granulite fa-cies genesis. J Geol 106: 455–472

    Article  Google Scholar 

  • Frey M, Hunziker JC, Jäger E, Stern WB (1983) Regional distribution of white K-mica poly-morphs and their phengite content in the Central Alps. Contrib Mineral Petrol 83: 185–197

    Article  Google Scholar 

  • Frost BR, Frost CD, Hulsebosch TP, Swapp SM (2000) Origin of the Charnockites of the Louis Lake Batholith, Wind River Range, Wyoming. J Petrol 41: 1759–1776

    Google Scholar 

  • Frilh-Green GL (1994) Interdependence of deformation, fluid infiltration and reaction pro-gress recorded in eclogitic metagranitoids (Sesia Zone, Western Alps). J Metamorph Geol 12: 327–343

    Article  Google Scholar 

  • Ganguly J, Singh RN, Ramana DV (1995) Thermal perturbation during charnockitization and granulite facies metamorphism in southern India. J Metamorph Geol 13: 419–430

    Article  Google Scholar 

  • Gibbons W, Horak J (1984) Alpine metamorphism of Hercynian hornblende granodiorite beneath the blueschist facies schistes lustrés nappe of NE Corsica. J Metamorph Geol 2: 95–113

    Article  Google Scholar 

  • Grant JA (1986) Quartz-phlogopite-liquid equilibria and origins of charnockites. Am Miner-al 71: 1071–1075

    Google Scholar 

  • Grapes R, Otsuki M (1983) Peristerite composition in quartzofeldspathic schists, Franz Josef Fox Glacier Area, New Zealand. J Metamorph Geol 1: 47–61

    Google Scholar 

  • Grapes R, Watanabe T (1992) Paragenesis of titanite in metagraywackes of the Franz Josef-Fox Glacier area, Southern Alps, New Zealand. Eur J Mineral 3: 547–555

    Google Scholar 

  • Hirajima T, Compagnoni R (1993) Petrology of a jadeite-quartz/coesite-almandine-phengite fels with retrograde ferro-nyböite from Dora-Maira Massif, Western Alps. Eur J Mineral 5: 943–955

    Google Scholar 

  • Holtz F, Johannes W, Tamic N, Behrens H (2001) Maximum and minimum water contents of granitic melts generated in the crust: a reevaluation and implications. Lithos 56: 1–14

    Article  Google Scholar 

  • Koons PO, Thompson AB (1985) Non-mafic rocks in the greenschist, blueschist and eclogite facies. Chem Geol 50: 3–30

    Article  Google Scholar 

  • Kriegsman LM (2001) Partial melting, partial melt extraction and partial back reaction in anatectic migmatites. Lithos 56: 75–96

    Article  Google Scholar 

  • Le Goff E, Ballèvre M (1990) Geothermobarometry in albite-garnet orthogneisses: a case study from the Gran Paradiso nappe ( Western Alps ). Lithos 25: 261–280

    Google Scholar 

  • Leake BE (1998) Widespread secondary Ca garnet and other Ca silicates in the Galway Granite and its satellite plutons caused by fluid movements, western Ireland. Mineral Mag 62: 381–386

    Article  Google Scholar 

  • Luth WD, Jahns RH, Tuttle OF (1964) The granite system at pressures of 4 to 10 kilobars. J Geophys Res 69: 659–773

    Article  Google Scholar 

  • Massone HJ, Chopin CP (1989) P-T history of the Gran Paradiso (western Alps) meta-granites based on phengite geobarometry. In: Daly JS, Cliff RA, Yardley BWD (eds) Evo-lution of metamorphic belts. Geological Society Special Publication. Blackwell, Oxford, pp 545–550

    Google Scholar 

  • Mehnert KR (1968) Migmatites and the origin of granitic rocks. Elsevier, Amsterdam

    Google Scholar 

  • Morteani G, Raase P (1974) Metamorphic plagioclase crystallization and zones of equal anorthite content in epidote-bearing, amphibole-free rocks of the western Tauernfenster, eastern Alps. Lithos 7: 101–111

    Article  Google Scholar 

  • Mottana A, Carswell DA, Chopin C, Oberhänsli R (1990) Eclogite facies mineral parageneses. In: Carswell DA (ed) Eclogite facies rocks. Blackie, Glasgow, pp 14–52

    Google Scholar 

  • Nijland TG, Senior A (1991) Sveconorwegian granulite facies metamorphism of polyphase migmatites and basic dykes, south Norway. J Geol 99: 515–525

    Article  Google Scholar 

  • Nitsch KH (1970) Experimentelle Bestimmung der oberen Stabilitätsgrenze von Stilpnomelan. Fortschr Mineral 47: 48–49

    Google Scholar 

  • Oberhänsli R, Hunziker JC, Martinotti G, Stern WB (1985) Geochemistry, geochronology and petrology of Monte Mucrone: an example of eo-alpine eclogitization of Permian granitoids in the Sesia-Lanzo zone, western Alps, Italy. Chem Geol Isotope Geosci Sect 52: 165–184

    Google Scholar 

  • Olsen SN (1984) Mass-balance and mass-transfer in migmatites from the Colorado Front Range. Contrib Mineral Petrol 85: 30–44

    Article  Google Scholar 

  • Osanai Y, Komatsu M, Owada M (1991) Metamorphism and granite genesis in the Hidaka Metamorphic Belt, Hokkaido, Japan. J Metamorph Geol 9: 111–124

    Google Scholar 

  • Patiíío Douce AE, Humphreys ED, Johnston AD (1990) Anatexis and metamorphism in tectonically thickened continental crust exemplified by the Sevier hinterland, western North America. Earth Planet Sci Lett 97: 290–315

    Article  Google Scholar 

  • Patrick B (1995) High-pressure-low-temperature metamorphism of granitic orthogneiss in the Brooks Range, northern Alaska. J Metamorph Geol 13: 111–124

    Article  Google Scholar 

  • Santosh M, Jackson DH, Harris NB, Mattey DP (1991) Carbonic fluid inclusions in South Indian granulites: evidence for entrapment during charnockite formation. Contrib Mineral Petrol 108: 318–330

    Article  Google Scholar 

  • Schwarcz HP (1966) Chemical and mineralogic variations in an Arkosic Quartzite during progressive regional metamorphism. Geol Soc Am Bull 77: 509–532

    Article  Google Scholar 

  • Steck A (1976) Albit-Oligoklas-Mineralgesellschaften der Peristeritlücke aus alpinmetamorphen Granitgneisen des Gotthardmassivs. Schweiz Mineral Petrogr Mitt 56: 269–292

    Google Scholar 

  • Steck A, Burri G (1971) Chemismus und Paragenesen von Granaten aus Granitgneisen der Grünschiefer-und Amphibolitfazies der Zentralalpen. Schweiz Mineral Petrogr Mitt 51: 534–538

    Google Scholar 

  • Thurston SP (1985) Structure, petrology, and metamorphic history of the Nome Group blueschist terrane, Salmon Lake area, Seward Peninsula, Alaska. Geol Soc Am Bull 96: 600–617

    Article  Google Scholar 

  • Török K (1998) Magmatic and high-pressure metamorphic development of orthogneisses in the Sopron area, Eastern Alps (W-Hungary). Neues Jahrb Mineral Abh 173: 63–91

    Google Scholar 

  • Tulloch AJ (1979) Secondary Ca-Al silicates as low-grade alteration products of granitoid biotite. Contrib Mineral Petrol 69: 105–117

    Article  Google Scholar 

  • Voll G (1976) Recrystallisation of quartz, biotite and feldspars from Erstfeld to the Leventina nappe, Swiss Alps, and its geological significance. Schweiz Mineral Petrogr Mitt 56: 641647

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bucher, K., Frey, M. (2002). Metamorphism of Granitoid Rocks. In: Petrogenesis of Metamorphic Rocks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04914-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04914-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04916-7

  • Online ISBN: 978-3-662-04914-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics