Skip to main content

GST-MAT Vector for the Efficient and Practical Removal of Marker Genes from Transgenic Plants

  • Chapter
Testing for Genetic Manipulation in Plants

Part of the book series: Molecular Methods of Plant Analysis ((MOLMETHPLANT,volume 22))

Abstract

In current transformation systems, a selectable marker gene is co-delivered with the gene of interest to identify and separate rare transgenic cells from non-transgenic cells. Since, during transformation, only a few plant cells accept the integration of foreign DNA, most of the cells remain non-transgenic. Usually, conditional dominant genes, which have no influence on the growth or morphology of plants, are used as selectable markers because they remain in the transgenic plants after transformation. The corresponding selective agents, which inhibit the growth of non-transgenic cells, are applied to the culture medium to identify transgenic plants. However, these selection systems have three potential pitfalls. (1) The negative effects of selective agents decrease the ability of transgenic cells to proliferate and differentiate into transgenic plants. (2) The presence of marker genes in transgenic plants precludes the use of the same marker gene for gene stacking through re-transformation. (3) The recent public concerns regarding the release of antibiotic-resistance genes limit their use for the commercialization of transgenic crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP (1984) T-DNA of Agrobacterium turnefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81: 5994–5998

    Article  PubMed  CAS  Google Scholar 

  • Barry GF, Rogers SG, Fraley RT, Brand L (1984) Identification of a cloned cytokinin biosynthetic gene. Proc Natl Acad Sci USA 81: 4776–4780

    Article  PubMed  CAS  Google Scholar 

  • Belzile F, Lassner MW, Tong Y, Khush R, Yoder JI (1989) Sexual transmission of transposed Activator elements in transgenic tomatoes. Genetics 123: 181–189

    PubMed  CAS  Google Scholar 

  • Ebinuma H, Komanine A (2001) MAT (multi-auto-transformation) vector system. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free trans-genic plants. In Vitro Cell Dev Biol Plant 37: 114–119

    Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997a) Selection of marker-free transgenic plants using the isopentenyl transferase gene as a selectable marker. Proc Natl Acad Sci USA 94: 2117–2121

    Article  PubMed  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M, Komamine A (1997b) Principle of MAT vector. Plant Biotechnol 14: 133–139

    Article  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Endo S, Kasahara T (2000) Selection of marker-free trans-genic plants using the oncogenes (ipt, rol A, B, C) of Agrobacterium as selectable markers. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol 2. Kluwer, Dordrecht, pp 25–46

    Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Endo S, Yamada K, Komamine A (2001) Systems for the removal of a selection marker and their combination with a positive marker. Plant Cell Rep 20: 383–392

    Article  CAS  Google Scholar 

  • Endo S, Kasahara T, Sugita K, Matsunaga E, Ebinuma H (2001) The isopentenyl transferase gene is effective as a selectable marker gene for plant transformation in tobacco (Nicotiana tabacum cv. Petite Havana SR1). Plant Cell Rep 20: 60–66

    Article  CAS  Google Scholar 

  • Estruch JJ, Prinsen E, Onckelen HV, Shell J, Spena A (1991) Viviparous leaves produced by somatic activation of an inactive cytokinin-synthesizing gene. Science 254: 1364–1367

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff N (1989) Maize transposable elements. In: Berg DE, Howe MM (eds) Mobile DNA. Am Soc Microbiol, Washington, pp 375–411

    Google Scholar 

  • Holt DC, Lay VJ, Clarke ED, Dinsmore A, Jepson I, Bright SWJ, Greenland AJ (1995) Characterization of the safener-induced glutathione S- transferase isoform II from maize. Planta 196: 295–302

    Article  PubMed  CAS  Google Scholar 

  • James DJ, Passey AJ, Barbara DJ (1990) Agrobacterium-mediated transformation of the cultivated strawberry (Fragaria _ Anannassa Duch.) using disarmed binary vectors. Plant Sci 69: 79–94

    Google Scholar 

  • Li Y, Hagen G, Guilfoyle TJ (1992) Altered morphology in transgenic tobacco plants that over-produce cytokinins in specific tissues and organs. Dev Biol 153: 386–395

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki H, Nakajima R, Nishiyama J, Araki H, Oshima Y (1990) Chromosome engineering in Saccharomyces cerevisiae by using a site-specific recombination system of a yeast plasmid. J Bacteriol 172: 610–618

    PubMed  CAS  Google Scholar 

  • Medford JI, Horgan R, El-Sawi Z, Klee HJ (1989) Alterations of endogenous cytokinins in trans-genic plants using a chimeric isopentenyl transferase gene. Plant Cell 1: 403–413

    PubMed  CAS  Google Scholar 

  • Onouchi H, Yokoi K, Machida C, Matsuzaki H, Oshima Y, Matsuoka K, Nakamura K, Machida Y (1991) Operation of an efficient site-specific recombination system of Zygosaccharomyces rouxii in tobacco cells. Nucleic Acids Res 19: 6373–6378

    Article  PubMed  CAS  Google Scholar 

  • Ooms G, Kaup A, Roberts J (1983) From tumour to tuber; tumour cell characteristics and chromosome numbers of crown gall-derived tetraploid potato plants (Solanum tuberosum cv. “Maris Bard”). Theor Appl Genet 66: 169–172

    Article  Google Scholar 

  • Schmulling T, Beinsberger J, Greef JD, Schell J, Onckelen HV, Spena A (1989) Construction of a heat-inducible chimeric gene to increase the cytokinin content in transgenic plant tissue. FEBS Lett 249: 401–406

    Article  Google Scholar 

  • Schwartzenberg KV, Doumas P, Jouanin L, Pilate G (1994) Enhancement of the endogenous cytokinin concentration in poplar by transformation with Agrobacterium T-DNA gene ipt. Tree Physiol 14: 27–35

    Article  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11: 118–130

    PubMed  CAS  Google Scholar 

  • Smart MC, Scofield SR, Bevan MW, Dyer TA (1991) Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium. Plant Cell 3: 647–656

    PubMed  CAS  Google Scholar 

  • Smigocki AC, Hammerschlag FA (1991) Regeneration of plants from peach embryo cells infected with a shooty mutant strain of Agrobacterium. J Am Soc Hortic Sci 116: 1092–1097

    Google Scholar 

  • Smigocki AC, Owens LD (1988) Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant cells. Proc Natl Acad Sci USA 85: 5131–5135

    Article  PubMed  CAS  Google Scholar 

  • Smigocki AC, Owens LD (1989) Cytokinin-to-auxin ratios and morphology of shoots and tissues transformed by a chimeric isopentenyl transferase gene. Plant Physiol 91: 808–811

    Article  PubMed  CAS  Google Scholar 

  • Sugita M, Gruissem W (1987) Developmental, organ-specific, and light-dependent expression of the tomato ribulose-1,5-bisphosphate carboxylase small subunit gene family. Proc Natl Acad Sci USA 84: 7104–7108

    Article  PubMed  CAS  Google Scholar 

  • Sugita K, Matsunaga E, Ebinuma H (1999) Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Rep 18: 941–947

    Article  CAS  Google Scholar 

  • Sugita K, Kasahara T, Matsunaga E, Ebinuma H (2000a) A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J 22: 461–469

    Article  PubMed  CAS  Google Scholar 

  • Sugita K, Matsunaga E, Kasahara T, Ebinuma H (2000b) Transgene stacking in plants in the absence of sexual crossing. Mol Breed 6: 529–536

    Article  CAS  Google Scholar 

  • Thomashow LS, Reeves S, Thomashow MF (1984) Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyses synthesis of indoleacetic acid. Proc Natl Acad Sci USA 81: 5071–5075

    Article  PubMed  CAS  Google Scholar 

  • Vahala T, Eriksson T, Tillberg E, Nicander B (1993) Expression of a cytokinin synthesis gene from Agrobacterium tumefaciens T-DNA in basket willow (Salix viminalis). Physiol Plant 88: 439–445

    Article  CAS  Google Scholar 

  • Wabiko H, Kagaya M, Kodama I, Masuda K, Kodama Y, Yamamoto H, Shibano Y, Sano H (1989) Isolation and characterization of diverse nopaline type Ti plasmids of Agrobacterium tumefaciens from Japan. Arch Microbiol 152: 119–124

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ebinuma, H., Sugita, K., Matsunaga, E., Endo, S., Yamada, K. (2002). GST-MAT Vector for the Efficient and Practical Removal of Marker Genes from Transgenic Plants. In: Jackson, J.F., Linskens, H.F. (eds) Testing for Genetic Manipulation in Plants. Molecular Methods of Plant Analysis, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04904-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04904-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07730-2

  • Online ISBN: 978-3-662-04904-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics