Advertisement

High-Resolution TEM Imaging

  • Brent Fultz
  • James M. Howe

Abstract

Spatial resolution is important for any microscopy. This chapter presents the theory, technique, and examples of achieving the ultimate resolution of a transmission electron microscope with the method of “high-resolution transmission electron microscopy.” Recall (Sect. 2.3.3) that the HRTEM image is an interference pattern between the forward-scattered and diffracted electron waves from the specimen. Interference patterns require close attention to the phases of the waves. While the ray optics approach is useful for a few geometrical arguments, the most important issues in HRTEM are best understood in terms of the phase of the electron wavefront and how this phase is altered by the specimen and by the objective lens. The specimen itself is approximated as an object that provides phase shifts to the electron wavefront, sometimes in proportion to its scattering potential. The method of HRTEM also demands close attention to the performance of the objective lens and other characteristics of the microscope.

Keywords

Spherical Wave Spherical Aberration Fresnel Zone Atomic Column Contrast Transfer Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

The contents of the following are described in the Bibliography

  1. S. Amelinckx and D. van Dyck: ‘Diffraction Contrast and High Resolution Microscopy of Structures and Structural Defects’, in Electron Diffraction Techniques, Volume 2, J. M. Cowley, Ed. (International Union of Crystallography, Oxford University Press, Oxford 1992).Google Scholar
  2. J. Barry: ‘Computing for High-Resolution Images and Diffraction Patterns’. In Electron Diffraction Techniques, Volume 1, J. M. Cowley, Ed. (International Union of Crystallography, Oxford University Press, Oxford 1992).Google Scholar
  3. P. R. Buseck, J. M. Cowley and L. Eyring: High-Resolution Transmission Electron Microscopy and Associated Techniques (Oxford University Press, Oxford 1988).Google Scholar
  4. J. M. Cowley: Diffraction Physics, 2nd edn. (North—Holland, Amsterdam. 1975).Google Scholar
  5. P. Grivet: Electron Optics, revised by A. Septier, translated by P. W. Hawkes (Pergamon, Oxford 1965).Google Scholar
  6. S. J. Pennycook, D. E. Jesson, M. F. Chisholm, N. D. Browning, A. J. McGibbon, and M. M. McGibbon: ‘Z-Contrast Imaging in the Scanning Transmission Electron Microscope’, J. Micros. Soc. Amer. 1, 234 (1995).Google Scholar
  7. L. Reimer: Transmission Electron Microscopy: Physics of Image Formation and Microanalysis, 4th edn. (Springer—Verlag, New York 1997).CrossRefGoogle Scholar
  8. J. C. Russ: Computer-Assisted Microscopy: The Measurement and Analysis of Images (Plenum Press, New York 1990).CrossRefGoogle Scholar
  9. F. G. Smith and J. H. Thomson: Optics, 2nd edn. (John Wiley and Sons, New York 1988).Google Scholar
  10. J. C. H. Spence: Experimental High-Resolution Electron Microscopy (Oxford University Press, Oxford 1988).Google Scholar
  11. G. Thomas and M. J. Goringe: Transmission Electron Microscopy of Materials (Wiley—Interscience, New York 1979).Google Scholar
  12. D. B. Williams and C. B. Carter: Transmission Electron Microscopy: A Textbook for Materials Science (Plenum Press, New York 1996).CrossRefGoogle Scholar

Chapter 10 title image of Pb precipitate in Al. Figure reprinted with the courtesy of U. Dahmen

  1. 10.1
    J. M. Cowley and A. F. Moodie: Acta Cryst. 10, 609 (1957).CrossRefGoogle Scholar
  2. 10.1a
    J. M. Cowley and A. F. Moodie: Acta Cryst. Ibid. 12, 353, 360, 367 (1959).CrossRefGoogle Scholar
  3. 10.2
    M. A. O’Keefe: ‘Electron image simulation; a complementary processing technique’. In: Proceedings of the 3rd Pfeffercorn Conference on Electron Optical Systems, Ocean City, MD ed. by J. J. Hren, F. A. Lenz, E. Munro, P. B. Sewell, and S. A. Bhatt (Scanning Electron Microscopy, Inc., Illinois 1984) pp. 209–220.Google Scholar
  4. 10.3
    R. R. Meyer, J. Sloan, R. E. Dunin-Borkowski, A. I. Kirkland, M. C. Novotny, S. R. Bailey, J. L. Hutchison and M. L. H. Green: Science 289, 1324 (2000). Figure reproduced with the courtesy of J. L. Hutchison and the American Association for the Advancement of Science.CrossRefGoogle Scholar
  5. 10.4
    S. D. Hudson, H. T. Jung, V. Percec, W. D. Cho, G. Johansson, G. Ungar, V. S. K. Balagurusamy: Science 278, 449 (1997). Figure reproduced with the courtesy of S. D. Hudson and the American Association for the Advancement of Science.CrossRefGoogle Scholar
  6. 10.5
    S. R. Singh and J. M. Howe: Philos. Mag. A 66, 746 (1992). Figure reprinted with the courtesy of Taylor & Francis, Ltd.Google Scholar
  7. 10.6
    S. Das, J. M. Howe and J. H. Perepezko: Metall. Mater. Trans. 27A, 1627 (1996). Figure reprinted with the courtesy of The Minerals, Metals & Materials Society.Google Scholar
  8. 10.7
    G. Rao, J. M. Howe and P. Wynblatt, unpublished research.Google Scholar
  9. 10.8
    U. Dahmen: Micros. Soc. Amer. Bull. 24, 341 (1994). Figure reprinted with the courtesy of Microscopy Society of America.Google Scholar
  10. 10.9
    D. F. Sundo and J. M. Howe: ‘Theoretical and Experimental Analysis of the Effects of Composition and Strain on Image Contrast in High-Resolution Transmission Electron Microscopy’. In: Electron Microscopy 1990 - Vol. 1, Imaging Sciences ed. by G. W. Bailey (San Francisco Press, Inc., San Francisco 1990) p. 67. Figure reprinted with the courtesy of San Francisco Press, Inc.Google Scholar
  11. 10.10
    J. M. Howe, D. P. Basile, N. Prabhu and M. K. Hatalis: ‘Minimum Detectable Solute Concentration and Accuracy of Compositional Analysis in Atomic-Resolution Microscopy’. In: Analytical Electron Microscopy - 1987 ed. by D. C. Joy (San Francisco Press, Inc., San Francisco 1987) p. 238. Figure reprinted with the courtesy of San Francisco Press, Inc.Google Scholar
  12. 10.11
    Figure reprinted with the courtesy of R. Gronsky and D. Acklund.Google Scholar
  13. 10.12
    J. M. Howe and S. J. Rozeveld: J. Micros. Res. Tech. 23, 233 (1992). Reprinted with the courtesy of Wiley-Liss, Inc.Google Scholar
  14. 10.13
    M. M. Tsai: Determination of the Growth Mechanisms of TiH in Ti Using High-Resolution and Energy-Filtering Transmission Electron Microscopy. Ph.D. Thesis, University of Virginia, Charlottesville, VA (1997). Figure reprinted with the courtesy of Dr. M. M. Tsai.Google Scholar
  15. 10.14 such as Gatan Digital MicrographTM or NIH Image.Google Scholar
  16. 10.15 B. Laird and J. M. Howe, unpublished research.Google Scholar
  17. 10.16
    R. Kilaas and R. Gronsky: Ultramicros. 16, 193 (1985). Figure reprinted with the courtesy of Elsevier Science Publishing B.V.CrossRefGoogle Scholar
  18. 10.17
    N. D. Browning, D. J. Wallis, P. D. Nellist and S. J. Pennycook: Micron 28, 334 (1997). Reprinted with the courtesy of Elsevier Science Ltd.CrossRefGoogle Scholar
  19. 10.18
    S. J. Pennycook, D. E. Jesson, M. F. Chisholm, N. D. Browning, A. J. McGibbon, and M. M. McGibbon: J. Micros. Soc. Amer. 1, 234 (1995). Reprinted with the courtesy of Microscopy Society of America.Google Scholar
  20. 10.19
    A. Amali and P. Rez: Microsc. and Microanal. 3, 28 (1997).Google Scholar
  21. 10.20
    P. M. Voyles and D. A. Muller, private communication. See also P. M. Voyles, D. A. Muller, J. L. Grazul, P. H. Citrin, and H-.J. L. Gossmann: Nature 416, 826 (2002).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Brent Fultz
    • 1
  • James M. Howe
    • 2
  1. 1.Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of Materials Science and EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations