Probing an Optical Field with Atomic Resolution

  • Günter R. Guthöhrlein
  • Matthias Keller
  • Wulfhard Lange
  • Herbert Walther


This paper describes the investigation of an optical field with atomic resolution. The probe is a single trapped ion in a linear Paul trap. The trap allows the longitudinal direction to be scanned by displacing the ion along the trap axis. In the two transversal directions the ion is confined by the trap potential and therefore the optical field is scanned by displacement of the sample using a piezo drive. The method is demonstrated by measuring particular modes of an optical cavity.


Wave Packet Optical Field Cavity Field Cavity Quantum Electrodynamic Trap Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Betzig, R.J. Chichester, Science 262, 1422 (1993)Google Scholar
  2. 2.
    J. Michaelis, C. Hettich, A. Zayats, B. Eiermann, J. Mlynek, V. Sandoghdar, Opt. Lett. 24, 581 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    B. Sick, B. Hecht, U.P. Wild, L. Novotny, J. Microsc. 202, 365 (2001)MathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Gotzinger, S. Demmerer, O. Benson, V. Sandoghdar, J. Mircosc. 202, 117 (2001)MathSciNetGoogle Scholar
  5. 5.
    J.A. Veerman, M.F. Garcia-Parajo, L. Kuipers, N.F. van Hulst, J. Microsc. 194, 477 (1999)CrossRefGoogle Scholar
  6. 6.
    G.R. Guthöhrlein, M. Keller, K. Hayasaka, W. Lange, H. Walther, Nature, in pressGoogle Scholar
  7. 7.
    J.T. Höffges, H.W. Baldauf, W. Lange, H. Walther, J. Mod. Opt. 44, 1999 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    J.T. Höffges, H.W. Baldauf, T. Eichler, S.R. Helmfrid, H. Walther, Opt. Commun. 133, 170 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    C. Monroe et al., Phys. Rev. Lett. 75, 4011 (1995)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    E. Peik, J. Abel, T. Becker, J. von Zanthier, H. Walther, Phys. Rev. A 60, 439 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    C.F. Roos et al., Phys. Rev. Lett. 85, 5547 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    D.M. Meekhof, C. Monroe, B.E. King, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 76, 1796 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    A. Kuhn, M. Hennrich, T. Bondo, G. Rempe, Appl. Phys. B 69, 373 (1999)ADSCrossRefGoogle Scholar
  14. 13.
    P.W.H. Pinkse, T. Fischer, P. Maunz, G. Rempe, Nature (London) 404, 365 (2000)ADSCrossRefGoogle Scholar
  15. 13.
    J. Ye, D.W. Vernooy, H.J. Kimble, Phys. Rev. Lett. 83, 4987 (2000)ADSCrossRefGoogle Scholar
  16. 13.
    C.J. Hood, T.W. Lynn, A.C. Doherty, A.S. Parkins, H.J. Kimble, Science 287, 1447 (2000)ADSCrossRefGoogle Scholar
  17. 14.
    C.K. Law, J.H. Eberly, Phys. Rev. Lett. 76, 1055 (1996)ADSCrossRefGoogle Scholar
  18. 14.
    C.K. Law, H.J. Kimble, J. Mod. Opt. 44, 2067 (1997)ADSGoogle Scholar
  19. 14.
    P. Domokos, M. Brune, J.M. Raimond, S. Haroche, Eur. Phys. J. D 1, 1 (1998)ADSGoogle Scholar
  20. 15.
    M. Hennrich, T. Legero, A. Kuhn, G. Rempe, Phys. Rev. Lett. 85, 4872 (2000)ADSCrossRefGoogle Scholar
  21. 16.
    G.M. Meyer, H.-J. Briegel, H. Walther, Europhys. Lett. 37, 317 (1997)ADSCrossRefGoogle Scholar
  22. 17.
    F. Diedrich, H. Walther, Phys. Rev. Lett. 58, 203 (1987)ADSCrossRefGoogle Scholar
  23. 18.
    T. Pellizzari, S.A. Gardiner, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 75, 3788 (1995)ADSCrossRefGoogle Scholar
  24. 19.
    S.B. Zheng, G.C. Guo, Phys. Rev. Lett. 85, 2392 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Günter R. Guthöhrlein
  • Matthias Keller
  • Wulfhard Lange
  • Herbert Walther

There are no affiliations available

Personalised recommendations