Skip to main content

Detection of Physiologically Active Flower Volatiles Using Gas Chromatography Coupled with Electroantennography

  • Chapter
Book cover Analysis of Taste and Aroma

Part of the book series: Molecular Methods of Plant Analysis ((MOLMETHPLANT,volume 21))

Abstract

Most insect-pollinated plants produce floral odour to attract their pollinators. Fragrances and floral morphology typically advertise the presence of food rewards, i.e. nectar, pollen, or oil (Vogel 1983). Floral volatiles, however, can also be the reward themselves: some euglossine bees and fruit flies actually collect the fragrance from certain flowers and thereby pollinate them (Dodson et al. 1969; Sazima et al. 1993; Tan and Nishida 2000). Some orchids emit floral odour, typically not detectable by humans, which mimics the sex pheromone of insects, the males of which pollinate the flowers in an attempted copulation or precopulatory routine (Kullenberg 1961; Peakall and Beattie 1996; Schiestl et al. 1999). These orchids exploit their pollinators as they do not provide any reward for them. On the other hand, herbivorous insects can utilise floral volatiles to find their host plants, particularly if they feed or oviposit on the flowers (Blight et al. 1995). Floral odour is thought to have originally evolved to deter insects that fed on reproductive parts of the plant (Pellmyr and Thien 1986). Accidental pollination by these insects may have outweighed the disadvantages of their feeding activity, thus leading to a selection for a means of increasing insect attraction to the flowers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agelopoulos NG, Pickett JA (1998) Headspace analysis in chemical ecology: effects of different sampling methods on ratios of volatile compounds present in headspace samples. J Chem Ecol 24(7):1161–1172

    Article  CAS  Google Scholar 

  • Agelopoulos N, Birkett MA, Hick AJ, Hooper AM, Pickett JA, Pow EM, Smart LE, Smiley DWM, Wadhams LJ, Woodcock CM (1999) Exploiting semiochemicals in insect control. Pestic Sci 55:225–235

    Article  CAS  Google Scholar 

  • Ågren L, Borg-Karlson A-K (1984) Responses of Argogorytes (Hymenoptera: Sphecidae) males to odour signals from Ophrys insectifera (Orchidaceae). Preliminary EAG and chemical investigation. Nova Acta Reg Soc Sci Ups Ser 5(C3):111–117

    Google Scholar 

  • Akers RP, Getz WM (1993) Response of olfactory receptor neurons in honeybees to odorants and their binary mixtures. J Comp Physiol A 173:169–185

    Article  Google Scholar 

  • Altenburger R, Matile P (1988) Circadian rhythmicity of fragrance emission in flowers of Hoya carnosa R. Br Planta 174:248–252

    Article  CAS  Google Scholar 

  • Altenburger R, Matile P (1990) Further observations on rhythmic emissions of fragrance in flowers. Planta 180:194–197

    Article  CAS  Google Scholar 

  • Andersen JF, Metcalf RL (1986) Identification of a volatile attractant for Diabrotica and Acalymma spp. from blossoms of Cucurbita maxima Duchnesne. J Chem Ecol 12(3):687–699 Anderson P, Hansson BS, Löfquist J (1995) Plant-odour-specific receptor neurons on the antennae of female and male Spodoptera littoralis. Physiol Entomol 20:189–198

    Article  Google Scholar 

  • Arn H, Städler E, Rauscher S (1975) The electroantennographic detector — a selective and sensitive tool in the gas chromatographic analysis of insect pheromones. Z Naturforsch 30c: 722–725

    Google Scholar 

  • Ayasse M, Schiestl FP, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, Francke W (2000) Evolution of reproductive strategies in the sexually deceptive orchid Ophrys sphegodes: how does flowerspecific variation of odor signals influence reproductive success? Evolution 54(6):1995–2006

    PubMed  CAS  Google Scholar 

  • Bartelt RJ (1997) Calibration of a commercial solid-phase microextraction device for measuring headspace concentrations of organic volatiles. Anal Chem 69(3):364–372

    Article  PubMed  CAS  Google Scholar 

  • Bergström G, Dobson HEM, Groth I (1995) Spatial fragrance pattern within the flowers of Ranunculus acris (Ranunculaceae). Plant Syst Evol 195:221–242

    Article  Google Scholar 

  • Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Petterson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock C (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA 97(16):9329–9334

    Article  PubMed  CAS  Google Scholar 

  • Bjostad LB (1998) Electrophysiological methods. In: Millar JG, Haynes KF (eds) Methods in chemical ecology, vol 1. Chemical methods. Chapman and Hall, Norwell, pp 339–375

    Chapter  Google Scholar 

  • Bjostad LB, Roelofs WL (1980) An inexpensive electronic device for measuring electroantennogram responses to sex pheromone components with a voltmeter. Physiol Ent 5:309–314

    Article  Google Scholar 

  • Blight MM, Hick AJ, Pickett JA, Smart LE, Wadhams LJ, Woodcock CM (1992) Volatile plant metabolites involved in host-plant recognition by the cabbage seed weevil, Ceutrhynchus assimilis. In: Proc 8th Int Symp Insect-Plant Relationships. Kluwer, Dordrecht, pp 105–106

    Chapter  Google Scholar 

  • Blight MM, Pickett JA, Wadhams LJ, Woodcock CM (1995) Antennal perception of oilseed rape, Brassica napus (Brassicaceae), volatiles by the cabbage seed weevil Ceutorhynchus assimilis (Coleoptera, Curculionidae). J Chem Ecol 21(11):1649–1664

    Article  CAS  Google Scholar 

  • Boeckh J (1962) Elektrophysiologische Untersuchungen an einzelnen Geruchsrezeptoren auf den Antennen des Totengräbers (Necrophorus. Coleoptera). Z Vergl Physiol 46:212–248

    Article  Google Scholar 

  • Brockmann A, Brückner D (1998) The EAG response spectra of workers and drones to queen honeybee mandibular gland components: the evolution of a social signal. Naturwissenschaften 85:283–285

    Article  CAS  Google Scholar 

  • Cork A, Beevor PS, Gough AJE, Hall DR (1990) Gas chromatography linked to electroantennography: a versatile technique for identifying insect semiochemicals. In: Proc 1st Int Symp on Chromatography and Isolation of Insect Hormones, Pheromones and Related Compounds. Plenum Press, New York, pp 271–279

    Chapter  Google Scholar 

  • Cossé AA, Todd JL, Millar JG, Martinez LA, Baker TC (1995) Electroantennographic and coupled gas chromatographic electroantennographic responses of the Mediterranean fruit fly, Ceratitis capitata, to male-produced volatiles and mango odor. J Chem Ecol 21(11):1823–1836

    Article  Google Scholar 

  • De Jong R, Pham-Delègue M-H (1991) Electroantennogram responses related to olfactory conditioning in the honey bee (Apis mellifera ligustica). J Insect Physiol 374:319–324

    Article  Google Scholar 

  • De Kramer JJ, Hemberger J (1987) The neurobiology of pheromone reception. In: Prestwich GD, Blomquist GJ (eds) Pheromone biochemistry. Academic Press, Orlando, pp 433–472

    Google Scholar 

  • Dobson HEM (1991) Analysis of flower and pollen volatiles. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis, new series, vol 12. Springer, Berlin Heidelberg New York, pp 231–251

    Google Scholar 

  • Dobson HEM (1994) Floral volatiles in insect biology. In: Bernays EA (ed) Insect-plant interactions, vol V. CRC Press, Boca Raton, pp 47–81

    Google Scholar 

  • Dobson HEM, Groth I, Bergström G (1996) Pollen advertisement: chemical contrasts between whole-flower and pollen odors. Am J Bot 83(7):877–885

    Article  CAS  Google Scholar 

  • Dobson HEM, Danielson EM, Van Wesep ID (1999) Pollen odor chemicals as modulators of bumble bee foraging on Rosa rugosa Thunb (Rosaceae). Pl Spec Biol 14:153–166

    Article  Google Scholar 

  • Dodson CH, Dressler RL, Hills HG, Adams RM, Williams NH (1969) Biologically active compounds in orchid fragrances. Science 164:1243–1249

    Article  PubMed  CAS  Google Scholar 

  • Esslen J, Kaissling K-E (1976) Zahl und Verteilung antennaler Sensillen bei der Honigbiene (Apis mellifera L.). Zoomorphologie 83:227–251

    Article  Google Scholar 

  • Evans KA, Allen-Williams LJ (1992) Electroantennogram responses of the cabbage seed weevil, Ceutorhynchus assimilis, to oilseed rape, Brassica napus ssp. oleifera, volatiles. J Chem Ecol 18(9):1641–1659

    Article  CAS  Google Scholar 

  • Fonta C, Masson C (1984) Comparative study by electrophysiology of olfactory responses in bumblebees (Bombus hypnorum and Bombus terrestris). J Chem Ecol 10(8):1157–1169

    Article  CAS  Google Scholar 

  • Free JB (1987) Pheromones of social bees. Chapman and Hall, London

    Google Scholar 

  • Gabel B, Thiéry D, Suchy V, Marion-Poll F, Hradsky P, Farkas P (1992) Floral volatiles of Tanacetumn vulgare L. attractive to Lobesia botrana Den. et Schiff. females. J Chem Ecol 18(5):693–701

    Article  CAS  Google Scholar 

  • Gouinguené S, de Cruz I, van der Pers J, Wadhams L, Marion-Poll F (1998) A new method to improve olfactory responses to GC effluents. Chem Sens 23:647–652

    Article  Google Scholar 

  • Grob K, Grob G, Habich A (1984) Overcoming background contamination in closed loop stripping analysis (CLSA). J High Resolut Chromatogr Commun 7:340–342

    Article  CAS  Google Scholar 

  • Hansson BS (1995) Olfaction in Lepidoptera. Experientia 51:1003–1027

    Article  CAS  Google Scholar 

  • Heath RR, Dueben BD (1998) Analytical and preparative gas chromatography. In: Millar JG, Haynes KF (eds) Methods in chemical ecology, vol 1. Chemical methods. Chapman and Hall, Norwell, pp 185–125

    Google Scholar 

  • Henning AJ, Teuber RL (1992) Combined gas chromatography-electroantennogram characterization of alfalfa floral volatiles recognized by honey bees (Hymenoptera: Apidae). J Econ Entomol 85(1):226–232

    CAS  Google Scholar 

  • Honda K, Omura H, Hayashi N(1998) Identification of floral volatiles from Ligustrumn japonicumn that stimulate flower-visiting by cabbage butterfly, Pieris rapae. J Chem Ecol 24(12):2167–2180

    Article  Google Scholar 

  • Jones GJ, Oldham NJ (1999) Pheromone analysis using capillary gas chromatographic techniques. J Chromatogr A 843:199–236

    Article  CAS  Google Scholar 

  • Kaiser R (1991) Trapping, investigation and reconstitution of flower scents. In: Müller PM, Lamparsky (eds) Perfumes — art, science and technology. Elsevier, London, pp 213–250

    Google Scholar 

  • Kaiser R (1995) New or uncommon volatile compounds in floral scents. In: Proc 13th Int Congr of Flavours, Fragrances and Essential Oils, Istanbul, pp 1–34

    Google Scholar 

  • Kaissling K-E (1986) Chemo-electrical transduction in insect olfactory receptors. Annu Rev Neurosci 9:121–145

    Article  PubMed  CAS  Google Scholar 

  • Kaissling K-E, Thorson J (1980) Insect olfactory sensilla: structural, chemical and electrical aspects of the functional organization. In: Sattelle DB, Hall LM, Hildebrand JG (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier/North-Holland, Amsterdam, pp 261–282

    Google Scholar 

  • Kalinová B, Stránsky K, Harmantha J, Ctvrtečka R, Zd’ árek J (2000) Can chemical cues from blossom buds influence cultivar preference in the apple blossom weevil (Anthonomnus pomnorumn)? Entomol Exp Appl 95:47–52

    Article  Google Scholar 

  • Knudsen JT, Tollsten L, Bergström G (1993) Floral scents — a checklist of volatile compounds isolated by headspace techniques. Phytochemistry 332:253–280

    Article  Google Scholar 

  • Kullenberg B (1961) Studies in Ophrys pollination. Almquist and Wiksells Boktrykeri, Uppsala

    Google Scholar 

  • Lacher V(1964) Elektrophysiologische Untersuchungen an einzelnen Rezeptoren für Geruch, Kohlendioxyd, Luftfeuchtigkeit und Temperatur auf den Antennen der Arbeitsbiene und der Drone (Apis mnellifica L.). Z Vergl Physiol 48:587–623

    Article  Google Scholar 

  • MacTavish HS, Davies NW, Menary RC (2000) Emission of volatiles from brown Boronia flowers: some comparative observations. Ann Bot 86:347–354

    Article  Google Scholar 

  • Marion-Poll F, Thiéry D (1996) Dynamics of EAG responses to host plant volatiles delivered by a gas chromatograph. Entomol Exp Appl 80(1):120–123

    Article  Google Scholar 

  • Matile P, Altenburger R (1988) Rhythms of fragrance emission in flowers. Planta 174:242–247

    Article  CAS  Google Scholar 

  • Menzel R (1993) Associative learning in honey bees. Apidologie 24(3):157–168

    Article  Google Scholar 

  • Millar JG, Sims JJ (1998) Preparation, cleanup, and preliminary fractionation of extracts. In: Millar JG, Haynes KF (eds) Methods in chemical ecology, vol 1. Chemical methods. Chapman and Hall, Norwell, pp 1–37

    Google Scholar 

  • Moore I(1981) Biological amplification for increasing electroantennogram discrimination between two female sex pheromones of Spodoptera littoralis (Lepidoptera: Noctuidae). J Chem Ecol 7(5):791–798

    Article  CAS  Google Scholar 

  • Moorhouse JE, Yeadon R, Beevor PS, Nesbitt BF (1969) Method for use in studies of insect chemical communication. Nature 223:1174–1175

    Article  CAS  Google Scholar 

  • Omura H, Honda K, Nakagawa A, Hayashi N (1999a) The role of floral scent of the cherry tree, Prunus yedoensis, in the foraging behavior of Luehdorfia japonica (Lepidoptera: Papilionidae). Appl Entomol Zool 34(3):309–313

    CAS  Google Scholar 

  • Omura H, Honda K, Hayashi N (1999b) Chemical and chromatic bases for preferential visiting by the cabbage butterfly, Pieris rapae, to rape flowers. J Chem Ecol 25(8):1895–1906

    Article  CAS  Google Scholar 

  • Omura H, Honda K, Hayashi N (2000) Floral scent of Osmanthus fragrans discourages foraging behavior of cabbage butterfly, Pieris rapae. J Chem Ecol 26(3):655–666

    Article  CAS  Google Scholar 

  • Peakall R, Beattie AJ (1996) Ecological and genetic consequences of pollination by sexual deception in the orchid Caladenia tentactulata. Evolution 50(6):2207–2220

    Article  Google Scholar 

  • Pellmyr O, Thien LB (1986) Insect reproduction and floral fragrances: keys to the evolution of the angiosperms? Taxon 351:76–85

    Article  Google Scholar 

  • Pham-Delègue MH, Blight MM, Le Métayer M, Marion-Poll F, Picard AL, Pickett JA, Wadhams LJ, Woodcock CM (1992) Plant chemicals involved in the honeybee-rapeseed relationships: behavioural, electrophysiological and chemical studies. In: Proc 8th Int Symp Insect-Plant Relationships. Kluwer, Dordrecht, pp 129–130

    Chapter  Google Scholar 

  • Pham-Delègue MH, Blight MM, Kerguelen V, Le Métayer M, Marion-Poll F, Sandoz JC, Wadhams L (1997) Discrimination of oilseed rape volatiles by the honeybee: combined chemical and biological approaches. Entomol Exp Appl 83:87–92

    Article  Google Scholar 

  • Plepys D, Ibarra F, Löfstedt C, Hansson B, Francke W (2000) Behavioural and electrophysiological responses of silver Y moth, Autographa gamma (Lepidoptera: Noctuidae), to floral volatiles. In: Proc 21st Int Congr on Entomology, Foz do Iguassu, p 180

    Google Scholar 

  • Pow EM, Bennison JA, Birkett MA, Luszniak MJ, Manjunatha M, Pickett JA, Segers IS, Wadhams LJ, Wardlow LR, Woodcock CM (1998) Behavioural responses of western flower thrips (Frankliniella occidentalis) to host plant volatiles. In: Proc 6th Int Symp on Thysanoptera, Antalya, pp 121–128

    Google Scholar 

  • Priesner E(1973) Reaktionen von Riechrezeptoren männlicher Solitärbienen (Hymenoptera, Apoidea) auf Inhaltsstoffe von Ophrys-Blüten. Zoon Suppl 1:43–54

    Google Scholar 

  • Raguso AR, Light MD (1998) Electroantennogram responses of male Sphinx perelegans hawkmoths to floral and “green-leaf volatiles”. Entomol Exp Appl 86:287–293

    Article  CAS  Google Scholar 

  • Raguso AR, Pellmyr O (1998) Dynamic headspace analysis of floral volatiles: a comparison of methods. Oikos 81:238–254

    Article  CAS  Google Scholar 

  • Raguso AR, Pichersky E (1995) Floral volatiles from Clarika breweri and C. concinna (Onagraceae): recent evolution of floral scent and moth pollination. Plant Syst Evol 194:55–67

    Article  CAS  Google Scholar 

  • Raguso AR, Pichersky E (1999) A day in the life of a linalool molecule: chemical communication in a plant-pollinator system, part 1: linalool biosynthesis in flowering plants. Plant Spec Biol 14:95–120

    Article  Google Scholar 

  • Raguso AR, Light MD, Pickersky E (1996) Electroantennogram responses of Hyles lineata (Sphingidae: Lepidoptera) to volatile compounds from Clarika breweri (Onagraceae) and other moth-pollinated flowers. J Chem Ecol 22(10):1735–1767

    Article  CAS  Google Scholar 

  • Roelofs WL (1984) Electroantennogram assays: rapid and convenient screening procedures for pheromones. In: Hummel HE, Miller TA (eds) Techniques in pheromone research. Springer, Berlin Heidelberg New York, pp 131–159

    Chapter  Google Scholar 

  • Sazima M, Vogel S, Cocucci A, Hausner G (1993) The perfume flowers of Cyphomandra (Solanaceae)-pollination by euglossine bees, bellows mechanism, osmophores, and volatiles. Pl Syst Evol 187(1–4):51–88

    Article  CAS  Google Scholar 

  • Schiestl FP, Ayasse M, Paulus HF, Erdmann D, Francke W (1997) Variation of floral scent emission and postpollination changes in individual flowers of Ophrys sphegodes subsp. sphegodes. J Chem Ecol 23 (12):2881–2895

    Article  CAS  Google Scholar 

  • Schiestl FP, Ayasse M, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, Francke W (1999) Orchid pollination by sexual swindle. Nature 399:421–422

    Article  CAS  Google Scholar 

  • Schiestl FP, Ayasse M, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, Francke W (2000) Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): patterns of hydrocarbons as the key mechanism for pollination by sexual deception. J Comp Physiol A 186:567–574

    Article  PubMed  CAS  Google Scholar 

  • Schneider D(1957) Elektrophysiologische Untersuchungen von Chemo- und Mechanorezeptoren der Antenne des Seidenspinners (Bombyx mori L.). Z Vergl Physiol 40:8–41

    Article  Google Scholar 

  • Schneider D (1962) Electrophysiological investigation on the olfactory specificity of sexual attracting substances in different species of moths. J Insect Physiol 8:15–30

    Article  Google Scholar 

  • Steinbrecht RA (1987) Functional morphology of pheromone-sensitive sensilla. In: Prestwich GD, Blomquist JG (eds) Pheromone biochemistry. Academic Press, New York, pp 353–383

    Google Scholar 

  • Struble DL, Arn H (1984) Combined gas chromatography and electroantennogram recording of insect olfactory responses. In: Hummel HE, Miller TA (eds) Techniques in pheromone research. Springer, Berlin Heidelberg New York, pp 161–178

    Chapter  Google Scholar 

  • Tan K-H, Nishida R (2000) Mutual reproductive benefits between a wild orchid, Bulbophyllum patens, and Bactrocera fruit flies via a floral synomone. J Chem Ecol 262:533–546

    Article  Google Scholar 

  • Thiéry D, Marion-Poll F (1998) Electroantennogram responses of Douglas-fir seed chalcids to plant volatiles. J Insect Physiol 44:483–490

    Article  PubMed  Google Scholar 

  • Thiéry D, Bluet JM, Pham-Delègue MH, Etiévant P, Masson C (1990) Sunflower aroma detection by the honeybee; study by coupling gas chromatography and electroantennography. J Chem Ecol 163:701–711

    Article  Google Scholar 

  • Tollsten L, Bergström J (1989) Variation and post-pollination changes in floral odours released by Platanthera bifolia. Nord J Bot 9(4):359–362

    Article  Google Scholar 

  • Vareschi E (1971) Duftunterscheidung bei der Honigbiene — Einzelzell-Ableitungen und Verhaltensreaktionen. Z Vergl Physiol 75:143–173

    Google Scholar 

  • Vogel S (1962) Duftdrüsen im Dienste der Bestäubung; über Bau und Funktion der Osmophoren. Akad Wiss Lit (Mainz) Abh Math-Nat Kl (10):1–165

    Google Scholar 

  • Vogel S (1983) Ecophysiology of zoophilic pollination. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, new series vol 12C. Springer, Berlin Heidelberg New York, pp 560–611

    Google Scholar 

  • von Aufsess A (1960) Geruchliche Nahorientierung der Biene bei entomophilen und ornithophilen Blüten. Z Vergl Physiol 43:129–137

    Article  Google Scholar 

  • Wadhams LJ (1982) Coupled gas chromatography — single cell recording: a new technique for use in the analysis of insect pheromones. Z Naturforsch 37c:947–952

    Google Scholar 

  • Wadhams LJ (1984) The coupled gas chromatography-single cell recording technique. In: Hummel HE, Miller TA (eds) Techniques in pheromone research. Springer, Berlin Heidelberg New York, pp 179–189

    Chapter  Google Scholar 

  • Wadhams LJ (1990) The use of coupled gas chromatography-electrophysiological techniques in the identification of insect pheromones. In: McCaffery AR, Wilson ID (eds) Chromatography and isolation of insect hormones and pheromones. Plenum Press, New York, pp 289–298

    Chapter  Google Scholar 

  • Wadhams LJ, Blight MM, Kerguelen V, Le Métayer M, Marion-Poll F, Masson C, Pham-Delègue MH, Woodcook CM (1994) Discrimination of oilseed rape volatiles by honey bee: novel combined gas chromatographic-electrophysiological behavioral assay. J Chem Ecol 20(12): 3221–3231

    Article  CAS  Google Scholar 

  • Williams NH, Whitten WM (1983) Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade. Biol Bull 164:355–395

    Article  CAS  Google Scholar 

  • Zhang ZY, Pawliszyn J (1993) Analysis of organic compounds in environmental samples by headspace solid phase microextraction. HRC J High Resolut Chromatogr 16(12):689–692

    Article  CAS  Google Scholar 

  • Zhang AJ, Linn C, Wright S, Prokopy R, Reissig W, Roelofs W (1999) Identification of a new blend of apple volatiles attractive to the apple maggot, Rhagoletis pomonella. J Chem Ecol 25(6): 1221–1232

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schiestl, F.P., Marion-Poll, F. (2002). Detection of Physiologically Active Flower Volatiles Using Gas Chromatography Coupled with Electroantennography. In: Jackson, J.F., Linskens, H.F. (eds) Analysis of Taste and Aroma. Molecular Methods of Plant Analysis, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04857-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04857-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07513-1

  • Online ISBN: 978-3-662-04857-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics