Advertisement

Analysis of Rhythmic Emission of Volatile Compounds of Rose Flowers

  • J. P. E. G. Helsper
  • J. A. Davies
  • F. W. A. Verstappen
Chapter
Part of the Molecular Methods of Plant Analysis book series (MOLMETHPLANT, volume 21)

Abstract

Many phenomena in plants and animals show rhythmic patterns in activity and/or appearance. This rhythmicity may be controlled directly by periodic changes in environmental conditions such as temperature or light, e.g. generation of electrons by photosynthetic pigments in relation to daily changes in exposure to light. Many other processes, which are dependent on this activity, will show rhythmicity with the same interval but with a delay from which the length of time is dependent on intermediary reactions. When there is no further regulatory mechanism other than the abundance or intensity of the external regulatory signal, the rhythmicity of the phenomena will disappear when the signal loses its rhythmicity, e.g. when the plant is kept in constant dark or light.

Keywords

Volatile Compound GCMS Analysis Volatile Emission Rhythmic Pattern Rose Flower 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann IE, Bahnthorpe DV, Fordham WD, Kinder JP, Poots I (1989) 1-Glucosides of aroma components from petals of Rosa species: assay, occurrence and biosynthetic implications. J Plant Physiol 134:567–571CrossRefGoogle Scholar
  2. Altenburger R, Matile P (1988) Circadian rhythmicity of fragrance emission in flowers of Hoya carnosa. Planta 174:248–252CrossRefGoogle Scholar
  3. Altenburger R, Matile P (1990) Further observations on rhythmic emission of fragrance in flowers. Planta 180:194–197CrossRefGoogle Scholar
  4. Bouwmeester HJ, Verstappen FWA, Posthumus MA, Dicke M (1999) Spider mite-induced (3 S)(E)-Nerolidol synthase activity in cucumber and lima bean. The first dedicated step in acyclic homoterpene biosynthesis. Plant Physiol 121:173–180PubMedCrossRefGoogle Scholar
  5. Bünning E, Stern K (1930) Ber Dtsch Bot Ges 48:227Google Scholar
  6. De Mairan (1729) Histoire de l’Academie Royale des Sciences, Paris, p 35Google Scholar
  7. Dobson HEM (1991) Analysis of flower and pollen volatiles. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis, vol 12. Essential oils and waxes. Springer, Berlin Heidelberg New York, pp 231–251CrossRefGoogle Scholar
  8. Elmore JS, Esbahadin MA, Mottram DS (1997) Comparison of dynamic headspace concentration on Tenax with solid phase microextraction for the analysis of aroma volatiles. J Agric Food Chem 45:2638–2641CrossRefGoogle Scholar
  9. Engelsmann W, Sommerkamp A, Veit S, Hans J (1997) Methyl-jasmonate affects the circadian petal movement of Kalonchoe flowers. Biol Rhythm Res 28:377–390CrossRefGoogle Scholar
  10. Flament I (1991/1992) Chromatography — a 3D-analysis of the volatile constituents of living flowers. Cosmet Toilet, pp 114–122Google Scholar
  11. Flament I, Sauvegrain P, Sauberli U (1992) De la science a l’art structure et odeur des composants volatiles de la rose. Quadrinestale Inst Tetrahedron 3:1–13Google Scholar
  12. Francis MJO, Allcock C(1969) Geraniol β-D-glucoside occurrence and synthesis in rose flowers. Phytochemistry 8:1339–1347CrossRefGoogle Scholar
  13. Gershenzon J(1994) Metabolic costs of terpenoid accumulation in higher plants. J Chem Ecol 20:1281–1328CrossRefGoogle Scholar
  14. Gimenes M, Benedicto-Silva AA, Marques MD (1996) Circadian rhythms of pollen and nectar collection by bees on the flowers of Ludwigia elegans (Onagraceae). Biol Rhythm Res 27:281–290CrossRefGoogle Scholar
  15. Harada K, Mihara S (1984) The volatile constituents of Freesia flower (Freesia hybrida Hort). Agric Biol Chem 48:2843–2845CrossRefGoogle Scholar
  16. Helsper JPFG, Davies JA, Bouwmeester HJ, Krol AF, van Kampen MH (1998) Circadian rhythmicity of volatile compounds by flowers of Rosa hybrida L. cv. Honesty. Planta 207:88–95CrossRefGoogle Scholar
  17. Jakobsen HB, Olsen CE (1994) Influence of climatic factors on emission of flower volatiles in situ. Planta 192:365–371Google Scholar
  18. Jakobsen HB, Friis P, Nielsen JK, Olsen CE (1994) Emission of volatiles from flowers and leaves of Brassica napus in situ. Phytochemistry 37:695–699CrossRefGoogle Scholar
  19. Jones MB, Mansfield TA (1975) Circadian rhythms in plants. Sci Prog Oxf 62:103–125Google Scholar
  20. Knudsen JT, Tolsten L, Bergstrom LG (1993) Floral scents — a checklist of volatile compounds isolated by headspace techniques. Phytochemistry 33:253–280CrossRefGoogle Scholar
  21. Loughrin JH, Hamilton-Kemp TR, Andersen RA, Hildebrand DF (1991) Circadian rhythm of volatile emission from flowers of Nicotiana sylvestris and N. suaveolens. Physiol Plant 83: 492–496CrossRefGoogle Scholar
  22. Loughrin JH, Hamilton-Kemp TR, Burton HR, Andersen RA, Hildebrand DF (1992) Glycosidically bound volatile compounds of Nicotiana sylvestris and N. suaveolens flowers. Phytochemistry 31:1537–1540CrossRefGoogle Scholar
  23. Loughrin JH, Potter DA, Hamilton-Kemp TR (1995) Volatile compounds induced by herbivory act as aggregation kairomones for the Japanese beetle (Papilla japonica Newman). J Chem Ecol 21:1457–1467CrossRefGoogle Scholar
  24. Loughrin JH, Potter DA, Hamilton-Kemp TR (1997) Response of Japanese beetles (Coleoptera, scarabiacidae) to leaf volatiles of susceptible and resistant maple species. Environ Entomol 26:334–342Google Scholar
  25. Matile P, Altenburger R (1988) Rhythms of fragrance emission in flowers. Planta 174:242–247 Mookherjee BD, Trenkle RW, Wilson RA (1990) The chemistry of flowers, fruits and spices: live vs dead, a new dimension in fragrance research. Pure Appl Chem 62:1357–1364Google Scholar
  26. Overland L (1960) Endogenous rhythm in opening and odor of flowers of Cestrum nocturnum. Am J Bot 47:378–382CrossRefGoogle Scholar
  27. Pabst A, Barron D, Semon E, Schreier P (1992) A 4-hydroxy-β-ionone disaccharide glycoside from raspberry fruits. Phytochemistry 31:3105–3107CrossRefGoogle Scholar
  28. Patt JM, Rhoades DF, Corkill JA (1988) Analysis of floral fragrance of Platanthera stricta. Phytochemistry 27:91–95CrossRefGoogle Scholar
  29. Schwab W, Mahr C, Schreier P (1989) Studies on the enzymic hydrolysis of bound aroma components from Carica papya fruit. J Agric Food Chem 37:1009–1012CrossRefGoogle Scholar
  30. Simon V, Riba M-L, Waldhart A, Torres L (1995) Breakthrough volume of monoterpenes on Tenax TA: influence of temperature and concentration for α-pinene. J Chromatogr 704:465–471CrossRefGoogle Scholar
  31. Takabayashi J, Dicke M, Posthumus MA (1994) Volatile herbivore-induced terpenoids in plant-mite interactions: variation caused by biotic and abiotic factors. J Chem Ecol 20:1329–1354CrossRefGoogle Scholar
  32. Tanaka S, Yamaura T, Shigemoto R, Tabata M (1989) Phytochrome-mediated production of monoterpenes in thyme seedlings. Phytochemistry 28:2955–2957CrossRefGoogle Scholar
  33. Voirin S, Baumes R, Bitteur S, Gunata Z, Bayonove C (1990) Novel monoterpene disaccharide glycosides of Vitis vinifera grapes. J Agric Food Chem 38:1373–1378CrossRefGoogle Scholar
  34. Yamaura T, Tanaka S, Tabata M (1989) Light-dependent formation of glandular trichomes and monoterpenes in thyme seedlings. Phytochemistry 28:741–744CrossRefGoogle Scholar
  35. Yamaura T, Tanaka S, Tabata M (1991) Participation of phytochrome in the photoregulation of terpenoid synthesis in thyme seedlings. Plant Cell Physiol 32:603–607Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • J. P. E. G. Helsper
    • 1
  • J. A. Davies
    • 1
  • F. W. A. Verstappen
    • 1
  1. 1.Plant Research InternationalBusiness Unit Cell CyberneticsWageningenThe Netherlands

Personalised recommendations