Monomial Ideals

  • Serkan Hoşten
  • Gregory G. Smith
Part of the Algorithms and Computation in Mathematics book series (AACIM, volume 8)


Monomial ideals form an important link between commutative algebra and combinatorics. In this chapter, we demonstrate how to implement algorithms in Macaulay 2 for studying and using monomial ideals. We illustrate these methods with examples from combinatorics, integer programming, and algebraic geometry.


Simplicial Complex Vertex Cover Hilbert Series Hilbert Scheme Monomial Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen B. Altman and Steven L. Kleiman: Compactifying the Picard scheme. Adv. in Math., 35 (1) :50–112, 1980.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Klaus Altmann: The chain property for the associated primes of A-graded ideals. arXiv:math.AG/0004142.Google Scholar
  3. 3.
    Dave Bayer and Mike Stillman: Computation of Hilbert functions. J. Symbolic Comput., 14 (1) : 31–50, 1992.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Anders Björner: Nonpure shellability, f-vectors, subspace arrangements and complexity. In Formal power series and algebraic combinatorics (New Brunswick, NJ, 1994), pages 25–53. Amer. Math. Soc., Providence, RI, 1996.Google Scholar
  5. 5.
    Anders Björner and Gil Kalai: An extended Euler-Poincaré theorem. Acta Math., 161(3–4) :279–303, 1988.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Winfried Bruns and Jürgen Herzog: Cohen-Macaulay rings. Cambridge University Press, Cambridge, 1993.MATHGoogle Scholar
  7. 7.
    David Eisenbud: Commutative algebra with a view toward algebraic geometry. Springer-Verlag, New York, 1995.MATHGoogle Scholar
  8. 8.
    Michael R. Garey and David S. Johnson: Computers and intractability. W. H. Freeman and Co., San Francisco, Calif., 1979. A guide to the theory of NP-completeness, A Series of Books in the Mathematical Sciences.MATHGoogle Scholar
  9. 9.
    Mark L. Green: Generic initial ideals. In Six lectures on commutative algebra (Bellaterra, 1996), pages 119–186. Birkhäuser, Basel, 1998.Google Scholar
  10. 10.
    Alexander Grothendieck: Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957–1962.]. Secrétariat mathématique, Paris, 1962.Google Scholar
  11. 11.
    Joe Harris and Ian Morrison: Moduli of curves. Springer-Verlag, New York, 1998.MATHGoogle Scholar
  12. 12.
    Robin Hartshorne: Connectedness of the Hilbert scheme. Inst. Hautes Études Sci. Publ. Math., 29:5–48, 1966.MathSciNetMATHGoogle Scholar
  13. 13.
    Serkan Hoşten and Diane Maclagan: The vertex ideal of a lattice. 20 pages, (2000), preprint.Google Scholar
  14. 14.
    Serkan Hoşten and Rekha R. Thomas: The associated primes of initial ideals of lattice ideals. Math. Res. Lett., 6(1):83–97, 1999.MathSciNetMATHGoogle Scholar
  15. 15.
    Serkan Hoşten and Rekha R. Thomas: Standard pairs and group relaxations in integer programming. J. Pure Appl. Algebra, 139(1–3):133–157, 1999. Effective methods in algebraic geometry (Saint-Malo, 1998) .MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Ezra Miller: Alexander Duality for Monomial Ideals and Their Resolutions. arXiv: math. AG/9812095 .Google Scholar
  17. 17.
    Ezra Miller: The Alexander duality functors and local duality with monomial support. J. Algebra, 231(1) :180–234, 2000.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Ezra Miller, Bernd Sturmfels, and Kohji Yanagawa: Generic and cogeneric monomial ideals. J. Symbolic Comput., 29(4–5):691–708, 2000. Symbolic computation in algebra, analysis, and geometry (Berkeley, CA, 1998) .MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Hidefumi Ohsugi and Takayuki Hibi: Normal polytopes arising from finite graphs. J. Algebra, 207(2) :409–426, 1998.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Alyson Reeves and Mike Stillman: Smoothness of the lexicographic point. J. Algebraic Geom., 6(2):235–246, 1997.MathSciNetMATHGoogle Scholar
  21. 21.
    Alyson A. Reeves: The radius of the Hilbert scheme. J. Algebraic Geom., 4 (4) :639–657, 1995.MathSciNetMATHGoogle Scholar
  22. 22.
    Mutsumi Saito, Bernd Sturmfels, and Nobuki Takayama: Gröbner deformations of hypergeometric differential equations. Springer-Verlag, Berlin, 2000.MATHGoogle Scholar
  23. 23.
    Aron Simis, Wolmer V. Vasconcelos, and Rafael H. Villarreal: The integral closure of subrings associated to graphs. J. Algebra, 199(1):281–289, 1998.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Richard P. Stanley: Combinatorics and commutative algebra. Birkhäuser Boston Inc., Boston, MA, second edition, 1996.MATHGoogle Scholar
  25. 25.
    Bernd Sturmfels: Gröbner bases and Stanley decompositions of determinantal rings. Math. Z., 205(1):137–144, 1990.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Bernd Sturmfels: Gröbner bases and convex polytopes. American Mathematical Society, Providence, RI, 1996.MATHGoogle Scholar
  27. 27.
    Bernd Sturmfels, Ngô Viêt Trung, and Wolfgang Vogel: Bounds on degrees of projective schemes. Math. Ann., 302 (3) :417–432, 1995.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Rafael H. Villarreal: Cohen-Macaulay graphs. Manuscripta Math., 66(3):277— 293, 1990.MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Günter M. Ziegler: Lectures on polytopes. Springer-Verlag, New York, 1995.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Serkan Hoşten
  • Gregory G. Smith

There are no affiliations available

Personalised recommendations