Hypnotic agents

  • Georg E. Cold
  • Bent L. Dahl


The effects of hypnotic agents are complex. They produce loss of consciousness, loss of memory, changes in spontaneous activity, attenuation of protective reflexes, loss of postural reflexes and unfavourable side effects such as hallucinations, euphoria, and amnesia. Theoretically many of these effects are mediated through changes in the homeostasis of neurotransmitters in the brain, such as dopamine, norepinephrine, acetylcholine, and γ-aminobutyric acid (GABA).


Cerebral Blood Flow Cerebral Autoregulation Severe Head Injury Cerebral Blood Flow Velocity Cereb Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowicz AE, Kass IS, Chambers G, Cottrell JE. Midazolam improves electrophysiologic recovery after anoxia and reduces the changes in ATP levels and calcium influx during anoxia in the rat hippocampal slice. Anesthesiology 1991: 74: 1121–1128.PubMedCrossRefGoogle Scholar
  2. Abrahams M, Eriksson H, Björnström K, Eintrei C. Effects of propofol on extracellular acidification rates in primary cortical cell cultures: application of silicon micro-physiometry to anaesthesia. Br J Anaesth 1999: 83: 467–469.PubMedCrossRefGoogle Scholar
  3. Abramson NS, Safar P, Detre K et al. Results of a randomized clinical trial of brain resuscitation with thiopental. Anesthesiology 1983: 59: A101.Google Scholar
  4. Aitken PG, Schiff SJ. Barbiturate protection against hypoxic neuronal damage in vitro. J Neurosurg 1986: 65: 230–232.PubMedCrossRefGoogle Scholar
  5. Albanese J, Martin C, Lacarelle B, et al. Pharmacokinitics of long-tern propofol infusion used for sadation in ICU patients. Anesthesiology 1990: 73: 214–217.PubMedCrossRefGoogle Scholar
  6. Albertsom TE, Tseng C-C, Joy RM. Propofol modification of evoked hippocampal dentate inhibition in urethane. anes-thetized rats. Anesthesiology 1991: 75: 82–90.CrossRefGoogle Scholar
  7. Albin MS, Bunegin L, Rasch J, et al. Ketamine hydrochloride fails to protect against acute global hypoxia in the rat. Anesth Analg 1989: 68: S8.Google Scholar
  8. Albrecht RF, Miletich DJ, Rosenberg R, Zahed B. Cerebral blood flow and metabolic changes from induction to onset of anesthesia with halothane or pentobarbital. Anesthesiology 1977: 47: 252–256.PubMedCrossRefGoogle Scholar
  9. Almaas R, Saugstad OD, Pleasure D, Footwelt T. Effect of barbiturates on hydroxyl radicals, lipid peroxidation, and hypoxic cell death in human NT2-N neurons. Anesthesiology 2000: 92: 764–774.PubMedCrossRefGoogle Scholar
  10. Altenburg BM, Michenfelder JD, Theye RA. Acute tolerance to thiopental in canine cerebral oxygen consumption studies. Anesthesiology 1969: 31: 443–448.PubMedCrossRefGoogle Scholar
  11. Altura BT, Altura BM. Barbiturates and aortic and venous smooth-muscle function. Anesthesiology 1975: 43: 432–444PubMedCrossRefGoogle Scholar
  12. Anderson RE, Sundt TM. Brain pH in focal cerebral ischaemia and the protective effects of barbiturate anesthesia. J Cereb Blood Flow Metab 1983: 3: 493–497.PubMedCrossRefGoogle Scholar
  13. Appadu BL, Strange PG, Lanbert DG. Does propofol interact with D2 dopamine recectors? Anesth Analg 1994: 79: 1191–1192.PubMedCrossRefGoogle Scholar
  14. Archer DP, Priddy RE, Tang TKK, et al. The influence of cryogenic brain injury on the pharmacodynaics of pentobarbital. Anesthesiology 1991: 75: 634–639PubMedCrossRefGoogle Scholar
  15. Archer DP, Froelich J, McHugh M, Pappius HM. Local cerebral glucose utilization in stimulated rats sedated with thiopental. Anesthesiology 1995: 83: 160–168.PubMedCrossRefGoogle Scholar
  16. Arden JR, Holley FO, Stanski DR. Increased sensitivity to etomidate in the elderly: Initial distribution versus altered brain response. Anesthesiology 1986: 65: 19–27.PubMedCrossRefGoogle Scholar
  17. Arnér S, Gordon E. The antagonist effect of naloxone hydrochloride after neuroleptanaesthesia during neurosurgery. Acta Anaesth Scand 1976: 20: 201–206.PubMedCrossRefGoogle Scholar
  18. Arnfred I, Secher O. Anoxia and barbiturates. Arch Int Pharmacodyn Ther 1962: 139: 67–74.Google Scholar
  19. Artru AA, Steen PA, Michenfelder JD. y-hydroxybuturate: Cerebral metabolic, vascular, and protective effects. J Neurochem 1980: 35: 1114–1119.PubMedCrossRefGoogle Scholar
  20. Artru AA, Michenfelder JD. Influence of hypothermia or hyperthermia alone or in combination with pentobarbital or phenotoin on survival time in hypoxic mice. Anesth Analg 1981: 60: 867–870.PubMedGoogle Scholar
  21. Artru AA. Dose-related changes in the rate of cerebrospinal fluid formation and resistance to reabsorption of cerebrospinal fluid following administration of thiopental, midazolam, and etomidate in dogs. Anesthesiology 1988a: 69: 541–546.PubMedCrossRefGoogle Scholar
  22. Artru AA. Survival time during hypoxia: Effects of nitrous oxide, thiopental, and hypothermia. Anesth Analg 1988b: 67: 913–196.PubMedCrossRefGoogle Scholar
  23. Artru AA, Katz RA. Cerebral blood volume and CSF pressure following administration of ketamine in dogs; modification by pre- or posttreatment with hypocapnia or diazepam. J Neurosurg Anesthesiol 1989: 1: 8–15.PubMedCrossRefGoogle Scholar
  24. Artru AA. Flumazenil reversal of midazolam in dogs: Dose-related changes in cerebral blood flow, metabolism, EEG, and CSF pressure. J Neurosurg Anesthesiol 1989a: 1: 46–55.PubMedCrossRefGoogle Scholar
  25. Artru AA. Intracranial volume-pressure relationship following thiopental or etomidate. Anesthesiology 1989b: 71: 763–768.PubMedCrossRefGoogle Scholar
  26. Artru AA. The rate of CSF formation, resistance to reabsorption of CSF, and aperiodic analysis of the EEG following administration of flumazenil to dogs. Anesthesiology 1990: 72: 111–117.PubMedCrossRefGoogle Scholar
  27. Artru AA. Intracranial volue-pressure relationship following flumazenil in anesthetized dogs. J Neurosurg Anesthesiol 1991:3: 107–116.PubMedCrossRefGoogle Scholar
  28. Artru AA, Shapira Y, Bowdle A. Electroencephalogram, cerebral metabolism, and vascular responses to propofol anesthesia in dogs. J Neurosurg Anesthesiol 1992: 4: 99–109.PubMedCrossRefGoogle Scholar
  29. Artru AA. Propofol combined with halothane or with fen-tanyl/halotahne does not alter the rate of CSF formation or resistance to reabsorption of the CSF in rabbits. J Neurosurg Anesthesiology 1993: 5: 250–257.Google Scholar
  30. Ashton D, VanReempts J, Wauquier A. Behavioral, electroencephalographic and histological study of the protective effect of etomidate against histotoxic dysoxia produced by cyanide. Arch Intern Pharmacodynamic Therapie 1981: 254: 196–213.Google Scholar
  31. Astrup J. Energy-requiring cell functions in the ischaemic brain. Their critical supply and possible inhibition in protective therapy. J Neurosurg 1982: 56: 482–497.PubMedCrossRefGoogle Scholar
  32. Astrup J, Rosen¢rn J, Cold GE, et al. Minimum cerebral blood flow and metabolism during craniotomy. Effect of thipental loading. Acta Anaesthesiol Scand 1984: 28: 478–481.PubMedCrossRefGoogle Scholar
  33. Barker J, Harper AM, McDowall DG, et al. Cerebral blood flow, cerebrospinal fluid pressure and EEG activity during neuroleptanalgesia induced with dehydrobenzperidol and phenoperidine. Br J Anaesth 1968: 40: 143–144.Google Scholar
  34. Batjar HH, Frankfurt AI, Purdy PD, et al. Use of etomidate, temporary arterial occlusion, and intraoperative angiography in surgical treatment of large and giant cerebral aneurysms. J Neurosurg 1988: 68: 234–240.CrossRefGoogle Scholar
  35. Baughman VL, Hoffman WE, Miletich DJ, Albrecht RE Effects of phenobarbital on cerebral blood flow and metabolism in young and aged rats. Anesthesiology 1986: 65: 500–505.PubMedCrossRefGoogle Scholar
  36. Baughman VL, Hoffman WE, Albrecht RF, Militich DJ. Cerebral vascular and metabolic effects of fentanyl and midazolam in young and aged rats. Anesthesiology 1987a: 67: 314–319.PubMedCrossRefGoogle Scholar
  37. Baughman VL, Hoffman WE, Miletich DJ, Albrecht RF. Neurologic outcome following regional cerebral ischemia with methohexital, midazolam, and etomidate. Anesthesiology 1987b: 67: A582.CrossRefGoogle Scholar
  38. Baughman VL, Hoffman WE, Miletich DJ, Albrecht RF. Cerebral metabolic depression and brain protection produced by midazolam and etomidate in the rat. J Neurosurg Anes-thesiol 1989: 1: 22–28.CrossRefGoogle Scholar
  39. Baum VC. Distinctive effects of the three intravenous anaesthetics on the inward rectifier (IKI) and the delayed rectifier (IK) potassium currents in myocardium: implications for the mechanisms of action. Anesth Analg 1993: 76: 18–23.PubMedGoogle Scholar
  40. Belopavlovic M and Buchthal A. Modification of ketamine-induced intracranial hypertension in neurosurgical patients by pretreatment with midazolam. Acta Anaesth scand 1982: 26: 458–462.PubMedCrossRefGoogle Scholar
  41. Belopavlovic M, Buchthal A. Intracranial pressure changes during the induction of anaesthesia with etomidate in neurosurgical patients. Intracranial Pressure V (eds) Isshii S, Nagai H, Brock M. Springer Verlag, Berlin Heidelberg 1983: 834–837.CrossRefGoogle Scholar
  42. Belapavlovic M, Buchthal A, Beks JWF. Barbiturates for cerebral aneurysm surgery. Acta Neurochir 1985: 76: 73–81.CrossRefGoogle Scholar
  43. Bedriss P, Stoiber HP, Bendriss-Brusset AC, et al. Propofol effects on EEG and relationship with plasma concentration during neurosurgery. Anesthesiology 1990: 73: A203.Google Scholar
  44. Bendtsen AO, Cold GE, Saaby Lomholt B, et al. Central haemodynamic during thiopental load and sodium nitro-prusside induced hypotension. Acta Anaesthesiol Scand 1983, suppl 78: 82: Abstract no 123.Google Scholar
  45. Bendtsen AO, Cold GE, Astrup J, Rosencrn J. Thiopental loading during controlled hypotension for intracranial aneurysm surgery Acta Anaesthesiol Scand 1984: 28: 473–477.PubMedCrossRefGoogle Scholar
  46. Bendtsen A, Kruse A, Madsen JB, et al. Use of a continuous infusion of althesin in neuroanaesthesia. Changes in cerebral blood flow, cerebral metabolism, the EEG and plasma alphaxalone concentration. Br J Anaesth 1985: 57: 369–374.PubMedCrossRefGoogle Scholar
  47. Bennett DR, Madsen JA, Jordan WS, Wiser WC. Ketamine anaesthesia in brain-damaged epileptics: electroencepha-lographic and clinical observations Neurology (Minneap.) 1973: 23: 449–460.CrossRefGoogle Scholar
  48. Berntman L, Welch FA, Bian Rosa IJ, Harp JR. Diazepam fails to protect brain tissue in hypoxic stress. Anesthesiology 1979: 51: S202.CrossRefGoogle Scholar
  49. Bertlik M, Orser BA, Yang L-W, MacDonald JF. Propofol selectively inhibits the NMDA sub-type of glutamate receptor. Can J Anaesth 1994: 41 (suppl, part u): A6CrossRefGoogle Scholar
  50. Bingham RM, Procaccio F, Prior PF, Hinds CJ. Cerebral electric activity influences the effects of etomidate on cerebral perfusion pressure in traumatic coma. Br J Anaesth 1985: 57: 843–848.PubMedCrossRefGoogle Scholar
  51. Björkman S, Nilsson F, Åkeson J, et al. The effect of thiopental on cerebral blood flow, and its relation to plasma conentra-tion, during simulated induction of anaesthesia in a porcine model. Acta Anaesthsiol Scand 1994: 38: 473–478.CrossRefGoogle Scholar
  52. Bleyaert AL, Nemoto EM, Safar P, et al. Thiopental amelioration of brain damage after global ischaemia in monkeys. Anesthesiology 1978: 49: 390–398.PubMedCrossRefGoogle Scholar
  53. Boardini DJ, Kassell NF, Coenter HC ,. Comparison of sodium thiopental and methohexital for high-dose barbiturate anesthesia. J Neurosurg 1984: 60: 602–608.CrossRefGoogle Scholar
  54. Borgeat A, Dessibourg C, Popovic V, et al. Propofol and spontaneous movements: An EEG study. Anesthesiology 1991: 74: 24–27.PubMedCrossRefGoogle Scholar
  55. Braestrup C, Squires RF. Specific benzodiazepine receptors in rat brain characterized by high affinity (3H)diazepam binding. Proc Natl Acad Sci USA 1977: 74: 3805–3809.PubMedCrossRefGoogle Scholar
  56. Branston NM, Hope DT, Symon L. Barbiturates in focal ischaemia of primate cortex: effects on blood flow distribution, evoked potential and extracellular potassium. Stroke 1979: 10: 647–653.PubMedCrossRefGoogle Scholar
  57. Bricolo AP, Glick RR Barbiturate effects on acute experimental intracranial hypertension. J Neurosurg 1981: 55: 397–406.PubMedCrossRefGoogle Scholar
  58. Bruce DA, Langfitt TW, Miller JD, et al. Regional cerebral blood flow, intracranial pressure, and brain metabolism in comatose patients. J Neurosurg 1973: 38: 131–145.PubMedCrossRefGoogle Scholar
  59. Buggy DJ, Nicol B, Rowbotham DJ, Lambert DG. Effects of intravenous anesthetic agents on glutamate release. Anesthesiology 2000: 92: 1067–1073.PubMedCrossRefGoogle Scholar
  60. Bühler M, Maitre PO, Hung OR, et al. Thiopental pharmacodynamics. I. Defining the pseudo-steady-state serum concentration-EEG effect relationship. Anesthesiology 1992: 77: 226–236.CrossRefGoogle Scholar
  61. Bullock R, van Dellen JR, Cambell D, et al. Experience with althesin in the manage ment of persistently raised ICP following severe head injury.J Neurosurg 1986: 64: 414–419.PubMedCrossRefGoogle Scholar
  62. Bundgaard H, Cold GE. A prospective comparative study of ICP during three anesthetics for elective craniotomy. Acta Anaesthesiol Scand 1997: suppl 110: 166Google Scholar
  63. Bundgaard H, Landsfeldt U, Cold GE. Subdural monitoring of ICP during craniotomy: Thresholds of cerebral swelling/herniation. Acta Neurochir 1998: suppl 71: 276–278.Google Scholar
  64. Campan L, Lazorthes Y. Note sur les effects compares des benzodiazepines et de la chlorpromazine sur la pression in-tracranienne du chien. Ann Anaesthsiol Fr 1976: 17: 1193–1198.Google Scholar
  65. Carlsson C., Harp JR, Siesjo BK. Metabolic changes in the cerebral cortex of the rat induced by intravenous pentothalsodium. Acta Anaesthesiol Scand 1975b: suppl 57: 7–17.CrossRefGoogle Scholar
  66. Carlsson C, Hagerdal M, Kaasik AE, Siesjo BK. The effects of diazepam on cerebral blood flow and oxygen consumption in rats and its synergistic interaction with nitrous oxide. Anesthesiology 1976b: 45: 319–325.PubMedCrossRefGoogle Scholar
  67. Carlsson C, Chapman AG. The effects of diazepam on the cerebral metabolic state in rats and its interaction with nitrous oxide. Anesthesiology 1981: 54: 488–495.PubMedCrossRefGoogle Scholar
  68. Cavazzuti M, Porro CA, Biral GP, et al. Ketamine effects on local cerebral blood flow and metabolism in the rat. J Cereb Blood Flow Metab. 1987: 7: 806–811.PubMedCrossRefGoogle Scholar
  69. Cavazzuti M, Porro CA, Barbieri A, Galetti A. Brain and spinal cord metabolic activity during propofol anaesthesia. Br J Anaesth. 1991: 66: 490–495.PubMedCrossRefGoogle Scholar
  70. Cenic A, Craen RA, Howard-Lech VL, et al. Cerebral blood volume and blood flow at varying arterial carbon dioxide tension levels in rabbits during propofol anaesthesia. Anesth Analg 2000: 90: 1376–1383.PubMedCrossRefGoogle Scholar
  71. Chapman AG, Nordstrom C-H, Siesjö BK. Influence of phenobarbital anesthesia on carbohydrate and amino-acid metabolism in rat brain. Anesthesiology 1978: 48: 175–182.PubMedCrossRefGoogle Scholar
  72. Cheng MA, Hoffman WE, Baughman VL, Albrecht RE The effects of midazolam and sufentanil sedation on middle cerebral artery blood flow velocity in awake patients. J Neurosurg Anesthesiol 1993: 5: 232–236.PubMedGoogle Scholar
  73. Chi OZ, Wei HM, Klein SL, Weiss HR. Effect of ketamine on heterogeneity of cerebral microregional venous O2 saturation in the rat. Anesth Analg 1994: 79: 860–866.PubMedCrossRefGoogle Scholar
  74. Chi OZ, Chun TW, Liu X, Weiss H. The effects of pentobarbital on blood-brain barrier dusruption caused by intracarotid injection of hyperosmolar mannitol in rats. Anesth Analg 1998: 86: 1230–1235.PubMedGoogle Scholar
  75. Chiolero RL, Ravussin P, Anderes JP, et al. Midazolam reversal with RO-15–1788 in patients with severe head injury. Anesthesiology 1986a: 65: A358.CrossRefGoogle Scholar
  76. Chiolero RL, Ravussin P, Chassot PG, et al. RO 15–1788 for rapid recovery after craniotomy. Anesthesiology 1986b: 65: A466.CrossRefGoogle Scholar
  77. Choi DW, Farb DH, Fischbach GD. Chlordiazepoxide selectively augments GABA action in spinal cord cultures. Nature 1977: 269: 342–344.PubMedCrossRefGoogle Scholar
  78. Church J, Zeman S, Lodge D. The neuroprotective action of ketamine and MK-801 after transient cerebral ischaemia in rats. Anesthesiology 1988: 69: 702–709.PubMedCrossRefGoogle Scholar
  79. Cold GE. Cerebral metabolic rate of oxygen (CMRO2) in the acute phase of head injury. Acta Anaesthesiol Scand 1978: 22:249–256.PubMedCrossRefGoogle Scholar
  80. Cold GE, Eskesen V, Eriksen H, et al. CBF and CMRO2 during continuous etomidate infusion supplemented with N2O and fentanyl in patients with supratentorial cerebral tumours. A dose response study. Acta Anaesthesiol Scand 1985: 29: 490–494.PubMedCrossRefGoogle Scholar
  81. Cold GE, Eskesen V, Eriksen H, Blatt Lyon B. Changes in CMRO2, EEG and concentration of etomidate in serum and brain tissue during craniotomy with continuous etomidate supplemented with N2O and fentanyl. Acta Anaesthesiol Scand 1986: 30: 159–163.PubMedCrossRefGoogle Scholar
  82. Cold GE, Christensen KJS, Nordentoft J, et al. Cerebral blood flow, cerebral metabolic rate of oxygen and relative CO2 reactivity during neurolept anesthesia in patients subjected to craniotomy for supratentorial cerebral tumours. Acta Anaesthesiol Scand 1988. 32: 310–315.PubMedCrossRefGoogle Scholar
  83. Cold GE. Measurement of CO2 reactivity and barbiturate reactivity in patients with severe head injury. Acta Neurochir (Wien) 1989: 98: 153–163.CrossRefGoogle Scholar
  84. Cold GE. Etomidate used for brain neurosurgical anaesthesia. The effect upon cerebral circulation and metabolism. Agressologie 1992.Google Scholar
  85. Cold GE, Tange M, Jensen TM, Ottesen S. Subdural pressure measurement during craniotomy. Corrrelation with tactile estimation of dural tension and brain herniation after opening of dura. Br J Neurosurg 1996: 10: 69–75.PubMedCrossRefGoogle Scholar
  86. Coles JP, Leary TS, Monteiro JN, et al. Propofol anesthesia for craniotomy: A double-blind comparison of remifentanil, alfentanil, and fentanyl. J Neurosurg Anesthesiol 2000: 12: 15–20.PubMedCrossRefGoogle Scholar
  87. Corkill G, Chikovanni OI, McLeish I, McDonald LW, Youmans JR. Timing of pentobarbital administration for brain protection in experimental stroke. Surg Neurol 1976: 5: 147–149.PubMedGoogle Scholar
  88. Corkill G, Sivalingham S, Reital JA, et al. Dose dependency of the post-insult protective effect of pentobarbital in the canine experimental stroke model. Stroke 1978: 9: 10–12.PubMedCrossRefGoogle Scholar
  89. Corssen G, Domino EF, Bree RL. Electroencephalographic effects of ketamine anesthesia in children. Anesth Analg 1969a: 48: 141–147.PubMedGoogle Scholar
  90. Corssen G, Groces EH, Gomez S, Allen RJ. Ketamine: its place in anaesthesia for neurosurgical diagnostic procedures. Anesth Analg 1969b: 48: 181–188.PubMedGoogle Scholar
  91. Cotev S, Shalit MN. Effects of diazepam on cerebral blood flow and oxygen uptake after head injury. Anesthesiology 1975: 43:117–122.PubMedCrossRefGoogle Scholar
  92. Cottrell JE, Giffin JP, Lim K, et al. Intracranial pressure, mean arterial pressure and heart rate following midazolam or thipental in humans with incracranial masses. Anesthesiology 1982: 57: A323.CrossRefGoogle Scholar
  93. Craen RA, Gelb AW, Murkin JM, Chong KY. CO2 responsiveness of cerebral blood flow is maintained during propofol anaesthesia. Can J Anaesth 1992, A7.Google Scholar
  94. Criado A, Maseda J, Navarro E, et al. Induction of anaesthesia with etomidate: Haemodynamic study of 36 patients. Br J Anaesth 1980: 52: 803–805.PubMedCrossRefGoogle Scholar
  95. Crosby G, Crane AM, Sokoloff L. Local changes in cerebral glucose utilization during ketamine anaesthesia. Anesthesiology 1982: 56: 437–443.PubMedCrossRefGoogle Scholar
  96. Crosby G, Crane AM, Sokoloff L. A comparison of local rates of glucose utilization in spinal cord and brain in conscious and nitrous oxide- or pentobarbital-treated rats. Anesthesiology 1984: 61: 434–438.PubMedCrossRefGoogle Scholar
  97. Cunitz G Danhauser I, Wickbold J. Comparative investigations on the influence of etomidate, thiopentone and methohexi-tone on the intracranial pressure of the patient. Anaesthe-sist 1973: 22: 357–366.Google Scholar
  98. Dahl B, Cold GE, Astrup J, Jensen K, Mosdal B, Plougman J. Dynamic changes in barbiturate- and CO2 reactivities in severe head injury. Acta Neurochir (Wien) 1993 (submitted).Google Scholar
  99. Dam M, Pizzolato G, Ricchieri GL, et al. The effects of propofol anaesthesia on local cerebral glucose utilization in the rat. Anesthesiology 1990: 73: 499–505.PubMedCrossRefGoogle Scholar
  100. Damsma G, Fibiger HC. The effects of anaesthesia and hypothermia in interstitial concentrations of acetylcholine and choline in the striatum. Life Sciences 1991: 48: 2469–2474.PubMedCrossRefGoogle Scholar
  101. Davis DW, Hawkins RA, Mans AM, et al. Regional cerebral glucose utilization during althesin anesthesia. Anesthesiology 1984: 61: 362–368.PubMedCrossRefGoogle Scholar
  102. Davis DW, Mans AM, Biebuyck JF, et al. Regional brain glucose utilization in rats during etomidate anaesthesia. Anesthesiology 1986: 64: 751–757.PubMedCrossRefGoogle Scholar
  103. Davis DW, Mans AM, Biebuyck JF, et al. The influence of ketamine on regional brain glucose use. Anesthesiology 1988: 69: 199–205.PubMedCrossRefGoogle Scholar
  104. Dawson B, Michenfelder JD, Theye RA. Effect of ketamine on canine cerebral blood flow and metabolism: modification by prior administration of thiopental. Anesth Analg 1971: 50: 443–447.PubMedCrossRefGoogle Scholar
  105. Day AL, Friedman WA, Sypert GW, Mickle JP. Successful treatment of the normal perfusion pressure breakthrough syndrome. Neurosurgery 1982: 11: 625–630.PubMedCrossRefGoogle Scholar
  106. Dearden NM, McDowall DG. Comparison of etomidate and althesin in the reduction of increased intracranial pressure after head injury. Br J Anaesth 1985: 57: 361–368.PubMedCrossRefGoogle Scholar
  107. DeLeon-Casasola OA, Weiss A, Lema MJ, Anaphylaxis due to propofol. Anesthesiology 1992: 77: 384–386.CrossRefGoogle Scholar
  108. Demiryürek AT, Cinel I, Kahraman S, et al. Propofol and Intralipid interact with reactive oxygen species: A chemiluminescens study. Br J Anaesth 1998: 80: 649–654.PubMedCrossRefGoogle Scholar
  109. Depaulis A, Bourguignon J-J, Marescaux C, et al. Effects of gamma-hydroxybuturate and gamma-butyrolactone derivates on spontaneous generalized non-convulsive siezures in the rat. Neuropharmacology 1988: 27: 683–689.PubMedCrossRefGoogle Scholar
  110. DeRiu PL, Petruzzi V, Testa C, et al. Propofol anticonvulsant activity in experimental epileptoc status. Br J Anaesth 1992: 69: 177–181.CrossRefGoogle Scholar
  111. Detsch O, Erkens U, Schneck H, et al. Cerebral blood flow velocity and carbon dioxide vasoreactivity during gamma-hydroxobutyrate/fentanyl anaesthesia in non-neurosurgical patients. Eur J Anaesthesiol 1999: 16: 195–200.PubMedGoogle Scholar
  112. DeValois JC, Peperkamp JPC. The influence of some drugs upon the regulation of cerebral blood flow in the rabbit. In: Ross Russell (ed) Brain and Blood Flow. Pitman Medical and Scientific Publishing Co LTD London 1971: 254–257.Google Scholar
  113. DiChiara G, Imperato A. Preferential stimulation of dopamine release in the nucleus accumbens by opiates, alcohol, and barbiturates: studies with transcerebral dialysis in freely moving rats. Ann NY Acad Sci 1986: 373: 367–381.Google Scholar
  114. Doenicke A, Lorenz W, Beigl R, et al. Histamine release after intravenous application of short-acting hypnotics. A comparison of etomidate, althesin and propanidid. Br J Anaesth 1973:45: 1097–1104.PubMedCrossRefGoogle Scholar
  115. Doenicke A, Kugler J, Penzel G et al. Hirnfunktion und Toleranzbreite nach Etomidate, einem neuen, Barbituratfreien i.v. applizierbaren Hypnotikum. Anaesthesist 1973: 22: 357–366.PubMedGoogle Scholar
  116. Doenicke A, Loffler B, Kugler J, et al. Plasma concentration and EEG after various regimens of etomidate. Br J Anaesth 1982: 54: 393–400.PubMedCrossRefGoogle Scholar
  117. Ebrahim ZY, DeBoer GE, Luders H, et al. Effect of etomidate on the electroencephalogram of patients with epilepsia. Anesth Analg 1986: 65: 1004–1006.PubMedCrossRefGoogle Scholar
  118. Ebrahim ZY., Schubert A, van Ness P, et al. The effect of propofol on the electroencephalogram of patients with epilepsy. Anesth Analg 1994: 78: 275–279.PubMedCrossRefGoogle Scholar
  119. Ederberg S, Westerlind A, Houltz E, et al. The effects of propofol on cerebral blood flow velocity and cerebral oxygen extraction during cardiopulmonary bypass. Anest Analg 1998: 86: 1201–1206.Google Scholar
  120. Edvinsson L, Mc Culloch J. Effects of pentobarbital on contractile reponses of feline cerebral arteries. J Cereb Blood Flow Metab 1981: 1: 437–440PubMedCrossRefGoogle Scholar
  121. Eintrei C, Sokoloff L, Smith CB. Effects of diazepam and ketamine administered individually or in combination on regional rates of glucose utilization in rat brain. Br J Anaesth 1999: 82: 596–602.PubMedCrossRefGoogle Scholar
  122. Eisenberg HM, Frankowski RF, Contant CF, et al. High-dose barbiturate control of elevated intracranial pressure in patients with severe head injury. J Neurosurg 1988: 69: 15–23.PubMedCrossRefGoogle Scholar
  123. Endoh H, Honda T, Komura N, et al. Effects of nicardipine-, nitroglycerin- and prostaglandin El-induced hypotension on human cerebrovascular carbon dioxide reactivity dur-ing propofol-fentanyl anesthesia. J Clin Anesth 1999: 11: 545–549.PubMedCrossRefGoogle Scholar
  124. Eng C, Lam A, Mayberg T. The influence of propofol with and without nitrous oxide on cerebral blood flow velocity and CO2 reactivity in man. Anesth Analg 1992: 74: S87Google Scholar
  125. Engberg M, Öberg B, Christensen KS, et al. The arterio-venous oxygen content differences (AVDO2) during halothane and neuroleptanaesthesia in patients subjected to craniotomy. Acta Anaesthiol Scand 1989: 33: 642–646.CrossRefGoogle Scholar
  126. Engelhard K, Werner C, Lu H, et al. Effect of S-(+)-ketamine on autoregulation of cerebral blood flow. Anasthesiol Intensivmed Notfallmed Schmerzther 1997: 32: 721–725.PubMedCrossRefGoogle Scholar
  127. Evans J, Rosen M, Weeks RD, Wise C. Ketamine in neurosurgical procedures. Lancet 1971: 1: 40–41.PubMedCrossRefGoogle Scholar
  128. Farling PA, Johnston JR, Coppel DL. Propofol infusion for sedation of patients with head injury in intensive care. Anaesthesia 1989: 44: 222–226.PubMedCrossRefGoogle Scholar
  129. Ferrer-Allado T, Brechner VL, Dymond A, et al. Ketamine-induced electroconvulsive phenomena in the human limbic and thalamic regions. Anesthesiology 1973: 38: 333–344.PubMedCrossRefGoogle Scholar
  130. Feustel PJ, Ingvar MC, Severinghaus JW. Cerebral oxyggen availability and blood flow during middle cerebral artery occlusion: Effects of pentobarbital. Stroke 1981: 12: 858–863.PubMedCrossRefGoogle Scholar
  131. Finlay WEI, McKee JI. Screen Cortisol levels in severely stressed patients. Lancet 1982: 1: 1414–1415.PubMedCrossRefGoogle Scholar
  132. Fischer S, Renz D, Schaper W, Karloczek GE In vitro effects of fentanyl, methoxital, and thiopental on brain edothemial permeability. Anesthesiology 1995: 82: 451–458.PubMedCrossRefGoogle Scholar
  133. Fischer S. Renz D, Schaper W, Karliczek GE Effects of barbiturates on hypoxic cultures of brain derived microvascular endothelial cells. Brain Res 1996: 707: 47–53.PubMedCrossRefGoogle Scholar
  134. Fitch W, McGeorge AP, MacKenzie ET. Anaesthesia for studies of the cerebral circulation: A comparison of phencyclidine and althesin in the baboon. Br J Anaesth 1978: 50: 985–990.PubMedCrossRefGoogle Scholar
  135. Flamm ES, Demopoulos HB, Seligman ML, Ransohoff J. Possible molecular mechanisms of barbiturate-mediated protection in regional cerebral ischaemia. Acta Neurol Scand 1977 (suppl 64): 150–151.Google Scholar
  136. Fleischer JE, Milde JH, Moyer TP, Michenfelder JD. Cerebral effects of high-dose midazolam and subsequent reversal with Ro 15–1788 in dogs. Anesthesiology 1988: 68: 234–242.PubMedCrossRefGoogle Scholar
  137. Ford EW, Morrell F, Whisler WW. Methohexital anesthesia in the surgical treatment of uncontrollable epilepsy. Anesth Analg 1982: 61: 997–1001.PubMedCrossRefGoogle Scholar
  138. Forster A, Juge O, Morel D. Effects of midazolam on cerebral blood flow in human volunteers. Anesthesiology 1982: 56: 453–455.PubMedCrossRefGoogle Scholar
  139. Forster A, Juge O, Louis M, Nahory A. Effects of a specific benzodiazepine antagonist (RO 15–1788) on cerebral blood flow. Anesth Analg 1987: 66: 309–313.PubMedCrossRefGoogle Scholar
  140. Fox J, Gelb AW, Enns J, Murkin JM, et al. The responsiveness of cerebral blood flow to changes in arterial carbon dioxide in maintained during propofol-nitrous oxide anesthesia in humans. Anesthesiology 1992: 77: 453–456.PubMedCrossRefGoogle Scholar
  141. Francis A, Pulsinelli WA. Increased binding of (3H)GABA to striatal membranes following ischemia. J Neurochem 1983: 40: 1497–1499.PubMedCrossRefGoogle Scholar
  142. Franks NP, Lieb WR. Molecular and cellular mechanisms of anaesthetics. Nature 1994: 367: 607–614.PubMedCrossRefGoogle Scholar
  143. Fragen RJ, Shanks CA, Molteni A, Avram MJ. Effects of etomidate on hormonal responses to surgical stress. Anesthesiology 1984: 61: 652–656.PubMedCrossRefGoogle Scholar
  144. Frenkel C, Urban BW. Human brain sodium channels as one of the molecular target sites for the new intravenous anaesthetic propofol (2,6-diisopropylphenol). Eur J Pharmacol 1991: 208: 75–79.PubMedCrossRefGoogle Scholar
  145. Frizzell RT, Meyer YJ, Borchers DJ, et al. The effects of etomidate on cerebral metabolism and blood flow in a canine model for hypoperfusion. J Neurosurg 1991: 74: 263–269.PubMedCrossRefGoogle Scholar
  146. Frizzell RT, Fichtel FM, Jordan MB, et al. Effects of etomidate and hypothermia on cerebral metabolism and blood flow in a canine model of hypoperfusion. Journal of Neurosurgical Anesthesiology 1993: 5: 104–110.PubMedGoogle Scholar
  147. Galley HF, Webster NR. Brain nitric oxide synthase activity is decreased by intravenous anesthetics. Anesth Analg 1996: 83: 591–594.PubMedGoogle Scholar
  148. Gancher S, Laxer KD, Krieger W. Activation of epileptogenic activity by etomidate. Anesthesiology 1984: 61: 616–618.PubMedCrossRefGoogle Scholar
  149. Gardner AE, Olson BE, Lichtiger M. Cerebrospinal-fluid pressure during dissociative anaesthesia with ketamine. Anesthesiology 1971:35: 226–228.PubMedCrossRefGoogle Scholar
  150. Gelb AW, Floyd P, Lok P, et al. A prophylactic bolus of thiopentone does not protect against prolonged focal ischaemia. Can Anesth Soc J 1986: 33: 173–177.CrossRefGoogle Scholar
  151. Gelb AW, Zhang C, Henderson SM. A comparison of the cerebral protective effects of propofol, thiopental, and ha-lothane in temporary feline focal cerebral ischemia. Anesth Analg 1993: 76: S115.Google Scholar
  152. Ghoneim MM, Yamada T. Etomidate: A clinical and electroencephalographic comparison with thiopental. Anesth Analg 1977: 56: 479–485.PubMedCrossRefGoogle Scholar
  153. Ghoneim MM, Block RI, Ping S, et al. The interactions of midazolam and flumazenil on human memory and cognition. Anesthesiology 1993: 79: 1183–1192.PubMedCrossRefGoogle Scholar
  154. Gibs JM. The effect of intravenous ketamine on cerebrospinal fluid pressure. Br J Anaesth 1972: 44: 1298–1302.CrossRefGoogle Scholar
  155. Giffard RG, Weiss JH, Swanson RA, Choi DW. Secobarbital attenuates excitotoxicity but potentiates oxygen-glucose deprivation neuronal injury in cortical cell culture. J Cereb Blood Flow Metab 1993: 13: 803–810.PubMedCrossRefGoogle Scholar
  156. Gisvold SE, Safar P, Hendrickx HHL, et al. Thiopental treatment after global ischemia in pigtailed monkeys. Anesthesiology 1984: 60: 88–96.PubMedCrossRefGoogle Scholar
  157. Gjedde A, Rasmussen M. Pentobarbital anesthesia reduces blood-brain glucose transfer in the rat. J Neurochem 1980: 35: 1382–1387.PubMedCrossRefGoogle Scholar
  158. Gordon E. The action of drugs on intracranial contents. In: Boulton TB, Bryce-Smith R et al. (eds); Progress in Anaes-thesiology, Excerpta Medica, Amsterdam 1970: 60.Google Scholar
  159. Goskowicz R, Patel P, Drummond J, et al. Ischemia induced release of glutamate in the rat brain: The effect of etomidate and thiopental. Anesthesiology 1993: 76: S123.Google Scholar
  160. Grant IS, Hutchison G. Epileptiform seizures during prolonged etomidate sedation. Lancet 1983: ii: 511–512.CrossRefGoogle Scholar
  161. Grände P-O, Gustafsson D, Lindberg L. Effects of thiopental on resistance vessels in cat skeletal muscle. Intensive Care Med 1990: 16: 399–404.PubMedCrossRefGoogle Scholar
  162. Grissom TE, Mitzel HC, Bunegin L, Albin MS. The effect of anesthetics on neurologic outcome during the recovery period of spinal cord injury in rats. Anesth Analg 1994: 79: 66–74.PubMedCrossRefGoogle Scholar
  163. Gronert GA, Michenfelder JD, Sharbrough FW, Milde JH. Canine cerebral metabolic tolerance during 24 hours deep pentobarbital anesthesia. Anesthesiology 1981: 55: 110–113.PubMedCrossRefGoogle Scholar
  164. Gross CE, Abel PW. Contraction and relaxation of rabbit basilar artery by thiopental. Neurosurgery 1985: 17: 433–435PubMedCrossRefGoogle Scholar
  165. Guit JBM, Koning HM, Cosster ML, et al. Ketamine as analgetic for total intravenous anaesthesia with propofol. Anaesthesia 1991: 46: 24–27.PubMedCrossRefGoogle Scholar
  166. Hagerdal M, Welch FA, Keykhah MM, et al. Protective effects of combinations of hypothermia and barbiturates in cerebral hypoxia in the rat. Anesthesiology 1978: 49: 165–169.PubMedCrossRefGoogle Scholar
  167. Hales TG, Lambert JJ. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurons. Br J Pharmacol 1991: 104: 619–628.PubMedCrossRefGoogle Scholar
  168. Haller C, Kuschinsky W, Reimnitz P. The effect of gamma-hy-droxybuturate on the reactivity of pial arteries before and after ischemia. J Cereb Blood Flow Metab 1986: 6: 658–666.PubMedCrossRefGoogle Scholar
  169. Haller C, Mende M, Schuier F, et al. Effect of y-hydroxybuturate on local and global glucose metabolism in the anesthetized cat brain. J Cereb Blood Flow Metab 1990: 10: 493–498.PubMedCrossRefGoogle Scholar
  170. Hamilton K, Bunegin L, Albin MS. The effect of ketamine hydrochloride (KH) on cerebral blood flow (CBF) during acute hypoxia in the rat. Anesth Analg 1992: 74: S128CrossRefGoogle Scholar
  171. Hankinson HL, Smith AL, Nielsen SL, Hoff JT. Effect of thiopental on focal cerebral ischaemia in dogs. Surg Forum 1974: 25: 445–447.PubMedGoogle Scholar
  172. Hara M, Kai Y, Ikemoto Y. Enhancement by propofol of the γ-aminobutyric acid response in dissociated hippocampal pryramidal neurons of the rat. Anesthesiology 1994: 81: 988–994.PubMedCrossRefGoogle Scholar
  173. Harris CE, Murray AM, Anderson JM, et al. Effects of thiopentone, etomidate and propofol on the haemodynamic response to tracheal intubation. Anaesthesia 1988: 43 (suppl): 32–36.PubMedCrossRefGoogle Scholar
  174. Harrison JM, Girling KJ, Mahajan RP. Effects of target-controlled infusion of propofol on the transient hyperaemic response and carbon dioxide reactivity in the middle cerebral artery. Br J Anaesth 1999: 83: 839–844.PubMedCrossRefGoogle Scholar
  175. Hartung HJ. Beeinflussung des Intrakraniellen Druckes durch Propofol (disoprivan). Anaesthesist 1987: 36: 66–68.PubMedGoogle Scholar
  176. Hartung HJ. Intrakranielles Druckverhalten bei Patienten mit Schädel Hirn-Trama nach Propofol- bzw Thiopental-Applikation. Anaesthesist 1987: 36: 285–287.PubMedGoogle Scholar
  177. Hase U, Dick W Zum Verhalten des Intrakraniellen Drucks bei Schädel-Hirn-tramatisierten Patienten nach Ketaminappli-kation. In Ketamin (Ketanest) in Notfall- und Katastrophenmedizin. Dick W (ed). Perimed Fachbuch, Erlangen, 1981: 77–81Google Scholar
  178. Hatano Y, Nakamura K, Moriyama S, et al. The contractile responses of isolated dog cerebral and extracerebral arteries to oxybarbiturates and thiobarbiturates. Anesthesiology 1989: 71: 80–86.PubMedCrossRefGoogle Scholar
  179. Hemelrijck JV, Tempelhoff R, White PF, Jellish WS. EEG-as-sisted titration of propofol infusion during neuroanesthesia: effect of nitrous oxide. J Neurosurg Anesthesiol 1992:4: 11–20PubMedCrossRefGoogle Scholar
  180. Henderson JJ, McGeorg A, Teasdale GM. Pharmacodynamics of althesin infusion: Electroencephalographic studies. Sixth European Congress of Anesthesiology, London, Anaesthesia 1982: 143.Google Scholar
  181. Henriksen L. Brain luxury perfusion during cardiopulmonary bypass in humans. A study of the cerebral blood flow response to changes in CO2, O2, and blood pressure. J Cereb Blood Flow Metab 1986: 6: 366–378.PubMedCrossRefGoogle Scholar
  182. Hensel I, Braum U, Kettler D, et al. Untersuchungen über Kreislauf- und Stoffwechselveränderungen unter Ketamine-Narkose. Anaesthesist: 1972: 21: 44–49.PubMedGoogle Scholar
  183. Herkenham M. Anesthetics and the habenulointerpeduncular system: selective sparing of metabolic activity. Brain Re-searce 1981:210:461–466.CrossRefGoogle Scholar
  184. Herrschaft H, Schmidt H, Gleim F, Albus G. The response of human cerebral blood flow to anesthesia with thiopentone, methohexitone, propanidide, ketamine and etomidate. In: Penzholz H, Brock M, et al. (eds); Advances in Neurosurgery, Springer Verlag, Berlin, Heidelberg, New York, 1975: 120–133.Google Scholar
  185. Hewitt PB, Chu DLK, Polkey E, Binnie CD. Effect of propofol on the electrocorticogram in epileptic patients undergoing cortical resection. Br J Anaesth 1999: 82: 199–202.PubMedCrossRefGoogle Scholar
  186. Hickey R, Albin MS, Bunegin L. Ketamine abolishes central nervous autoregulation in the rat. Anesth Analg 1989: 68: S120.CrossRefGoogle Scholar
  187. Hicks RG, Kerr DR, Horton DA. Thiopentone cerebral protection under EEG control during carotid endarterectomy. Anaesth Intens Care 1986: 14: 22–28.Google Scholar
  188. Hilfiker O, Kettler D. Die Wirkung von Midazolam auf die Hirndurchblutung beim Tier und beim Mensch. Arzneim Forsch 1981: 31: 2236–2237.Google Scholar
  189. Himmelseher S, Pfenninger E, Kochs E, Auchter M. S(+) ketamine up-regulates neuronal regeneration associated proteins following glutamate injury in cultured rat hippocampal neurons. J Neurosurg Anesthesiol 2000: 12: 84–94.PubMedCrossRefGoogle Scholar
  190. Hodes JE, Soncrant TT, Larson DM, et al. Selective changes in local cerebral glucose utilization induced by phenobarbital in the rat. Anesthesiology 1983: 63: 633–639.CrossRefGoogle Scholar
  191. Hoff J, Schmith A, Nielsen S, Larson P. Effects of barbiturate and halothane anaesthesia on focal cerebral infarction in the dog. Surg Forum 1973: 24: 449–452.PubMedGoogle Scholar
  192. Hoff JT, Smith AL, Hankinson HL, Nielsen SL, Barbiturate protection from cerebral infarction in primates. Stroke 1975: 6: 28–33.PubMedCrossRefGoogle Scholar
  193. Hoff JT, Pitts LH, Spetzler R, Wilson CB. Barbiturates for protection from cerebral ischaemia in aneurysm surgery. Acta Neurol Scand 1977: 56: 158–159.Google Scholar
  194. Hoffman WE, Miletich DJ, Albrecht RE The effects of midazolam on cerebral blood flow and oxygen consumption and its interaction with nitrous oxide. Anesth Analg 1986: 65: 729–733.PubMedGoogle Scholar
  195. Hoffman WE, Kochs E. Propofol: An intravenous anesthetic for neuroanesthetic practice? J Neurosurg Anesthesiol 1992: 4: 75–77.PubMedCrossRefGoogle Scholar
  196. Honegger P, Matthieu JM. Selective toxicity of the general anesthetic propofol for GABAergic neurons in rat brain cell cultures. J Neurosc Res 1996: 45: 631–636.CrossRefGoogle Scholar
  197. Hougaaard K, Hansen A, Brodersen P. The effect of ketamine on regional cerebral blood flow in man. Anesthesiology 1974: 41: 562–567.CrossRefGoogle Scholar
  198. Hung OR, Varvel JR, Shafer SL, Stanski DR. Thiopentone pharmacodynamics. II. Quantitation of the clinical and electroencephalographic depth of anesthesia. Anesthesiology 1992: 77: 237–244.PubMedCrossRefGoogle Scholar
  199. Hunter AR. Thiopentone supplemented anaesthesia for neurosurgery. Br J Anaesth 1972: 44: 506–510.PubMedCrossRefGoogle Scholar
  200. Iragi Y, Sugiyama Y, Awazu S, Hanano M. Comparative physiologically based pharmacokinetics of hexobarbital, phenobarbital, and thiopental in the rat. J Pharmacokin Biopharm 1982: 10: 53–55.CrossRefGoogle Scholar
  201. Iversen SD. Behavioral evaluation of cholinergic drugs. Life Sciences 1997: 60: 1145–1152.PubMedCrossRefGoogle Scholar
  202. Jansen GFA, Kagenaar D. Effects of propofol in the relation between CO2 and cerebral blood flow velocity. Anesth Analg 1993: 76: S163.Google Scholar
  203. Jones MV, Brooks PA, Harrison NL. Enhancement of γ aminobutyric acid activated CI” currents in cultured rat hippocampai neurones by three volatile anaesthetics. J Physiol 1992: 449: 279–293.PubMedGoogle Scholar
  204. Joo DT, Xiong Z, MacDonald JF. et al. Blockade of glutamate receptors and barbiturate anesthesia. Anesthesiology 1999: 91: 1329–1341.PubMedCrossRefGoogle Scholar
  205. Kahn R, Martinez-Tica J, Reich DL, et al. The effect of propofol infusion on dopamine release in rat corpus striatum during reversible forebrain ischeia. Anesth Analg 1993: 76: S175.Google Scholar
  206. Kassell NF, Hitchon PW, Gerk MK, et al. Alterations in cerebral blood flow, oxygen metabolism, and electrical activity produced by high dose sodium thiopental. Neurosurgery 1980: 7: 598–603.PubMedCrossRefGoogle Scholar
  207. Kassell NF, Hitchon PW, Gerk MK, et al. Influence of changes in arterial pCO2 on cerebral blood flow and metabolism during high-dose barbiturate therapy in dogs. J Neurosurg 1981: 54: 615–619.PubMedCrossRefGoogle Scholar
  208. Kayama Y, Iwama K. The EEG, evoked potentials, and singleunit activity during ketamine anaesthesia in cats. Anesthesiology 1972: 36: 316–328.PubMedCrossRefGoogle Scholar
  209. Kayama Y. Comparison of the effects of althesin and barbiturates on the neocortex and hippocampus in cats. Br J Anaesth 1974: 46: 912–917.PubMedCrossRefGoogle Scholar
  210. Keaney NP, McDowall DG, Pickerodt VWA, et al. Time course of the cerebral circulatory response to metabolic depression. Am J Physiol 1978: 234: H74-H79.PubMedGoogle Scholar
  211. Keykhah MM, Smith DS, O’Neil JJ, et al. The influence of etomidate on brain metabolites during severe hypoxia. Anesthesiology 1986: 65: A251.CrossRefGoogle Scholar
  212. Kiersey DK, Bickford RD, Faulconer A. Electroencepha-lographic patterns produced by thiopental sodium during surgical operations: Description and classification. Br J Anaesth 1951: 23: 141–152.PubMedCrossRefGoogle Scholar
  213. Kikuchi T, Wang Y, Shinbori H, et al. Effects of ketamine and pentobarbitone on the acetylcholine release from the rat frontal cortex in vivo: Measurement by brain micro dialysis. Br J Anaesth 1997: 79: 128–130.PubMedCrossRefGoogle Scholar
  214. Kikuchi T, Wang Y, Sato K, Okumura F. In vivo effects of propofol on acetylcholine release from the frontal cortex, hippocampus and striatum studied by intracerebral micro dialysis in freely moving rats. Br J Anaesth 1998: 80: 644–648.PubMedCrossRefGoogle Scholar
  215. Klausen NO, Moesgaard J, Ferguson AH, et al. Negative synacthen test during etomidate infusion. Lancet 1983: ii: 848.CrossRefGoogle Scholar
  216. Klose R, Hartung HJ, Kotsch R, Walz T. Experimentelle Untersuchungen zur Intracraniellen Drucksteigerung durch Ketamine beim Hämorrhagischen Schock. Anaesthesist 1982:31:33–38.PubMedGoogle Scholar
  217. Knudsen L, Cold GE, Holdgård HO, et al. The effect of midazolam on cerebral blood flow and oxygen consumption. Interaction with nitrous oxide in patients undergoing craniotomy for supratentorial cerebral tumours. Anaesthesia 1990: 45: 1016–1019.PubMedCrossRefGoogle Scholar
  218. Knudsen L, Cold GE, Jensen S, et al. Effects of flumazenil on cerebral blood flow and oxygen consumption after midazolam anaesthesia for craniotomy. Br J Anesth 1991: 67: 277–280.CrossRefGoogle Scholar
  219. Koch KA, Jackson DL, Schmiedl M, et al. Effect of thiopental therapy on cerebral blood flow after total cerebral ischaemia. Critical Care Med 1984: 12: 90–95.CrossRefGoogle Scholar
  220. Kochs E, Roewer N, Peter A, Schulte M, Esch J. Wirkungen von Flumazenil auf den Globalen Zerabralen Blutfluss und den Intrakraniellen Druck in der Reperfusionsphase nach Globaler inkompletter Zerebraler Ischämie. Anästh Intensivier Notfallmed 1988: 23: 159–162.CrossRefGoogle Scholar
  221. Kochs E, Schulte am Esch J. Antagonism of midazolam sedation by RO 15–1788: Effect on acustical evoked responses. Anesthesiology 1988: 65: A359.Google Scholar
  222. Kochs E, Werner C, Hoffman WE, et al. Concurrent increases in brain electrical activity and intracranial blood flow velocity during low-dose ketamine anaesthesia. Can J An-aesth 1991: 38: 826–830.CrossRefGoogle Scholar
  223. Kochs E, Hoffman WE, Werner C, et al. The effect of propofol on brain electrical activity, neurologic outcome, and neuronal damage following incomplete ischemia in rats. Anesthesiology 1992: 76: 245–252PubMedCrossRefGoogle Scholar
  224. Kohno T, Kumamoto E, Baba H, et al. Actions of midazolam on GABAergic transmission in substantia gelatinosa neurons of adult rat spinal cord slices. Anesthesiology 2000: 92: 507–515.PubMedCrossRefGoogle Scholar
  225. Koorn R, Brannan TS, Matinez-Tica J, et al. Effect of etomidate on in vivo ischemia-induced dopamine release in the corpus striatum of the rat: A study using cerebral microdialysis. Anesth Analg 1994: 78: 73–79.PubMedCrossRefGoogle Scholar
  226. Krieger W, Copperman J, Laxer KD. Seizures with etomidate anesthesia. Anesth Analg 1985: 64: 1226–1227.PubMedCrossRefGoogle Scholar
  227. Kreuscher H. Die Hirndurchblutung unter Neuroleptanaethesie. Springer Verlag Berlin Heidelberg New York 1967.CrossRefGoogle Scholar
  228. Krieglstein J, Sperling G, Twietmeyer G. Effects of thiopental on regulatory mechanisms of brain energy metabolism. Arch Pharmacol 1981: 318: 56–61.CrossRefGoogle Scholar
  229. Kumano H, Shimomura T, Furuya H, et al. Effects of flumazenil during administration of midazolam on pial vessel diameter and regional cerebral blood flow in cats. Acta Acaesthesiol Scand 1993: 37: 567–570.CrossRefGoogle Scholar
  230. Kumar A, Bleck TP. Intraavenous midazolam for the treatment of refractory status epilepticus. Critical Care Medicine 1992: 20: 483–488.PubMedCrossRefGoogle Scholar
  231. Kuschinsky W, Suda S, Sokoloff L. Influence of gamma-hydroxybuturate on the relationship between local cerebral glucose utilization and local cerebral blood flow in the rat brain. J Cereb Blood Flow Metab 1985: 5: 58–64.PubMedCrossRefGoogle Scholar
  232. Lagerkranser M, Stange K, Sollevi A. Effects of propofol on cerebral blood flow, metabolism, and cerebral autoregula-tion in the anesthetized pig. J Neurosurg Anesthesiol 1997: 9: 188–193.PubMedCrossRefGoogle Scholar
  233. Lafferty JJ, Keykhah MM, Shapiro HM, et al. Cerebral hypometabolism obtained with deep pentobarbital anesthesia and hypothermia (30 C). Anesthesiology 1978: 49: 159–164.PubMedCrossRefGoogle Scholar
  234. Larsen R, Hilfiker O, Radle J, Sonntag H. Midazolam: Wirkung auf allgemeine Hämodynamik, Hirndurchblutung und Cerebralen Sauerstoffverbrauch bei Neurochirurgischen Patienten. Anaethesist 1981: 30: 18–21.Google Scholar
  235. Laurent JP, Lawner P, Simeone FA, Fink E. Pentobarbital changes compartmental contribution to cerebral blood flow. J Neurosurg 1982: 56: 504–510.PubMedCrossRefGoogle Scholar
  236. Lawner PM, Simeone FA. Treatment of intraoperative middle cerebral artery occlusion with pentobarbital and extracranial-intracranial bypass. J Neurosurg 1979: 51: 710–712.PubMedCrossRefGoogle Scholar
  237. Laxenaire M-C, Gueant J-L, Bermejo E, Mouton C. Anaphylactic shock due to propofol. Lancet 1988: 2: 739–740.PubMedCrossRefGoogle Scholar
  238. Laxenaire M-C, Mata-Bermejo E, Moneret-Vautrin DA, Gueant J-L. Life-threatening anaphylactoid reactions to propofol (Diprivan). Anesthesiology 1992: 77: 275–280.PubMedCrossRefGoogle Scholar
  239. Ledingham IM, Watt I. Influence of sedation on mortality in critically ill multiple trauma patients. Lancet 1983: i: 1270.Google Scholar
  240. Levy DE, Brierley JB. Delayed pentobarbital administration limits ischemic brain damage in gerbils. Ann Neurol 1979: 5: 59–64.PubMedCrossRefGoogle Scholar
  241. Li CY, Chou TC, Wong CS, et al. Ketamine inhibits nitric oxide synthase in lipopolysaccharide-treated rat alveolar macrophages. Can J Anaesth 1997: 44: 989–995.PubMedCrossRefGoogle Scholar
  242. Lightfoote WE, Molinari GF, Chase TN. Modification of cerebral ischemic damage by anaesthetics. Stroke 1977: 8: 627–628.PubMedCrossRefGoogle Scholar
  243. List WF, Crumrine RS, Cascorbi HF, Weiss F. Increased cerebrospinal fluid pressure after ketamine (Correspondance). Anesthesiology 1972: 36: 98.PubMedCrossRefGoogle Scholar
  244. Lobe DP, Brauer FS. Barbiturate protection in extracranial-intracranial anastomosis. Anesthesiology 1983: 59: A 331.Google Scholar
  245. Longnecker DE, Sturgill BC. Influence of anesthetic agent on survival following hemorrhage. Anesthesiology 1976: 45: 516–521.PubMedCrossRefGoogle Scholar
  246. Longnecker DE. Stress free: To be or not to be? (editorial). Anesthesiology 1984: 61: 643–644.PubMedCrossRefGoogle Scholar
  247. Louis PT, Goddard-Finegold J, Fishman MA, et al. Barbiturates and hyperventilation during intracranial hypertension. Critical Care Medicine 1993: 21: 1200–1206.PubMedCrossRefGoogle Scholar
  248. Lowson S, Gent JP, Goodchild CS. Anticonvulsant properties of propofol and thiopentone: comparison using two tests in laboratory mice. Br J Anaesth 1990: 64: 59–63.PubMedCrossRefGoogle Scholar
  249. Ludic R, Keifer JC, Baghdoyan HA, Becker L. Microdialysis on the pontine reticular formation reveals inhibition of acetylcholine release by morphine. Anesthesiology 1993: 79: 1003–1012.CrossRefGoogle Scholar
  250. Lukatch HS, Maclver MB. Synaptic mechanisms of thiopental-induced anterations in synchronized cortical activity. Anesthesiology 1996: 84: 1425–1434.PubMedCrossRefGoogle Scholar
  251. Maclver MB, Mandema JW, Stanski DR, Bland BH. Thiopental uncouples hippocampal and cortical synchronized electroencephalographic activity. Anesthesiology 1996: 84: 1411–1424.CrossRefGoogle Scholar
  252. Madsen JB, Cold GE, Hansen ES, Bardrum B.Cerebral blood flow, cerebral metabolic rate of oxygen and relative CO2 reactivity during craniotomy for supratentorial cerebral tumours in halothane anaesthesia. A dose-response study. Acta Anaesthesiol Scand 1987a: 31: 454–457.PubMedCrossRefGoogle Scholar
  253. Madsen JB, Guldager H, Jensen FM. CBF and CMRO2 during neuroanaesthesia with continuous infusion of propofol. Acta Anaesthesiol Scand 1989: suppl 91: 33: 143.Google Scholar
  254. Maekawa T, Sakabe T, Takeshita H. Diazepam blocks cerebral metabolic and circulatory responses to local anesthetic-induced seizures. Anesthesiology 1974: 41: 389–391.PubMedCrossRefGoogle Scholar
  255. Makita T, Shibata O, Tsujita T, et al. Effects of intravenous anesthetics on phosphoidylinositol turnover in rat cerebral cortical prisms. Anesth Analg 1994: 79: 252–256.PubMedCrossRefGoogle Scholar
  256. Mandel P, Maitre M, Vayer P, Hechler V. Function of gammahydroxybuturate: a putative neurotransmitter. Biochem Soc Trans 1987: 15: 215–217.PubMedGoogle Scholar
  257. Marin J, Lobato RD, Rico ML, et al. Effect of pentobarbital on the reactivity of isolated human cerebral arteries. J Neurosurg 1981: 54: 521–524PubMedCrossRefGoogle Scholar
  258. Marshall LF, Sang UH. Treatment of massive intraoperative brain swelling. Neurosurgery 1983: 13: 412–414.PubMedCrossRefGoogle Scholar
  259. Marchall BM. Neuroleptanesthesia in neurosurgery. In. Oyama T (ed) International Anesthesiology Clinics. Little Brown and Company 1973: 103–125.Google Scholar
  260. Matsumoto M, Iida Y, Sakabe T, et al. Mild and moderate hypothermia provide better protection than a burst-suppression dese of thiopental against ischemic spinal cord injury in rabbits. Anesthesiology 1997: 86: 1120–1127.PubMedCrossRefGoogle Scholar
  261. Matta BF, Lam AM, Strebel S, Mayberg TS. Cerebral pressure autoregulation and carbon dioxide reactivity during propofol-induced EEG suppression. Br J Anaesth 1995: 74: 159–163.PubMedCrossRefGoogle Scholar
  262. Mayberg TS, Lam AM, Matta BF, et al. Ketamine does not increase cerebral blood flow velocity or intracranial pressure during isoflurane/nitrous oxide anaesthesia in patients undergoing craniotomy. Anesth Analg 1995: 81: 84–89.PubMedGoogle Scholar
  263. McCulloch TJ, Visco E, Lam AM. Graded hypercapnia and cerebral autoregulation during sevoflurane or porpofol anaesthesia. Anesthesiology 2000: 93:1205–1209.PubMedCrossRefGoogle Scholar
  264. McDowall DG, Heuser D, Okuda Y, et al. Relationship between cerebral blood flow changes and cortical extracellular fluid pH during cerebral metabolic depression induced by althe-sin. Br J Anaesth 1979:51: 1109–1115.PubMedCrossRefGoogle Scholar
  265. Merckx L, Van Hemelrijck J, van Aken H, et al. Total intravenous anesthesia using propofol and alfentanil infusion in neurosurgical patients. Anesthesiology 1988: 69: A576.CrossRefGoogle Scholar
  266. Meuret P, Backman SB, Bonhomme V, et al. Physiostigmine reverses propofol-induced unconsciousness and attenuation of the auditory steady state response and bispectral index in human volunteers. Anesthesiology 2000: 93: 708–717.PubMedCrossRefGoogle Scholar
  267. Michenfelder JD, Theye Ra, Effects of fentanyl, droperidol, and innovar on canine cerebral metabolism and blood flow. Br J Anaesth 1971: 43: 630–636.PubMedCrossRefGoogle Scholar
  268. Michenfelder JD, Theye RA. Cerebral protection by thiopental during hypoxia. Anesthesiology 1973: 39: 510–517.PubMedCrossRefGoogle Scholar
  269. Michenfelder JD. The interdependency of cerebral functional and metabolic effects following massive doses of thiopental in the dog. Anesthesiology 1974: 41: 231–236.PubMedCrossRefGoogle Scholar
  270. Michenfelder JD, Milde JH, Sundt JM jr. Cerebral protection by barbiturate anesthesia. Use after middle cerebral artery occlusion in Java monkeys. Arch Neurol 1976: 33: 345–350.PubMedCrossRefGoogle Scholar
  271. Michenfelder JD. A valid demonstration of barbiturate-induced brain protection in man-At last. Anesthesiology 1986: 64: 140–142.PubMedCrossRefGoogle Scholar
  272. Milde LN, Milde JH, Michenfelder JD. Cerebral functional, metabolic, and hemodynamic effects of etomidate in dogs. Anesthesiology 1985: 63: 371–377.PubMedCrossRefGoogle Scholar
  273. Milde LN, Milde JH. Preservation of cerebral metabolites by etomidate during incomplete cerebral ischemia in dogs. Anesthesiology 1986: 65: 272–277.PubMedCrossRefGoogle Scholar
  274. Milde LN. The hypoxic mouse model for screening cerebral protective agents: a re-examination. Anesth Analg 1988: 67: 917–922.PubMedCrossRefGoogle Scholar
  275. Miller JD. Barbiturates and raised intracranial pressure. Ann Neurol 1979: 6: 189–193.PubMedCrossRefGoogle Scholar
  276. Miller R, Tausk HC, Stark DCC. Effect of innovar, fentanyl and droperidol on the cerebrospinal fluid pressure in neurosurgical patients. Can Anaesth Soc J 1975: 22: 502–508.PubMedCrossRefGoogle Scholar
  277. Modica PA, Tempelhoff R. Intracranial pressure during induction of anaesthesia and tracheal intubation with etomidate-induced EEG burst suppression. Can J Anaesth 1992: 39: 236–241.PubMedCrossRefGoogle Scholar
  278. Moffat JA, McDougall MJ, Brunet D, et al. Thiopental bolus during carotid endarterectomy-rational drug therapy? Can Anaesth Soc J 1983: 30: 615–622.PubMedCrossRefGoogle Scholar
  279. Möhler H, Okada T. Benzodiazepines receptor: demonstration in the central nervous system. Science 1977: 198: 849–851.PubMedCrossRefGoogle Scholar
  280. Moss E, Powell D, Gibson RM, McDowall DG. Effect of etomidate on intracranial pressure and cerebral perfusion pressure. Br J Anaesth 1979: 51: 347–351.PubMedCrossRefGoogle Scholar
  281. Moss E, Price DJ. Effect of propofol on brain retraction pressure and cerebral perfusion pressure. Br J Anaesth 1990: 65: 823–825.PubMedCrossRefGoogle Scholar
  282. Moss E. Alfentanil increases intracranial pressure when intracranial compliance is low. Anaesthesia 1992: 47: 134–136.PubMedCrossRefGoogle Scholar
  283. Motsch J, Brietbarth J, Salzmann R, et al. Kognitive und Psychomotorische Leistungsfähigkeit nach Isofluran-, Midazolam/Alfentanil- und Propofol Anästhesie — Eine vergleichende Untersushung. Anaesthesist 1992: 41: 185–191.PubMedGoogle Scholar
  284. Munari C, Casaroli D, Matteuzzi G, Pacifico L. The use of althesin in drug-resistant status epilepticus. Epilepsia 1979: 20: 475–483.PubMedCrossRefGoogle Scholar
  285. Murkin JM, Farrar JK. The influence of high dose fentanyl-diazepam anesthesia on cerebral blood flow and cerebral oxygen consumption. Anesth Analg 1989: 68: S205.Google Scholar
  286. Murugaiah KD, Hemmings HC. Effect of intravenous general anesthetics on [3H]GABA release from rat cortical synap-tosomes. Anesthesiology 1998: 89: 919–928.PubMedCrossRefGoogle Scholar
  287. Musella L, Wilder BJ, Schmidt RP. Electroencephalographic activation with intravenous methohexital in psychomotor epilepsia. Neurology 1971: 21: 594–602.PubMedCrossRefGoogle Scholar
  288. Nagata A, Nakao S, Nishizawa N, et al. Xenon inhibits but N2O enhances ketamine-induced c-Fos expression in the rat posterior cingulate and retrosplenial cortices. Anesth Analg 2001: 92: 362–368.PubMedCrossRefGoogle Scholar
  289. Nakamura K, Hatano Y, Nishiwada M, Mori K. The vasodilator effect of thiamylal in dog mesenteric artery. Can J Phar 1991:69: 1163.CrossRefGoogle Scholar
  290. Nelson SR, Howard RB, Cross RS, Samson F. Ketamine-induced changes in regional glucose utilization in the rat brain. Anesthesiology 1980: 52: 330–334.PubMedCrossRefGoogle Scholar
  291. Nilsson L. The influence of barbiturate anesthesia upon the energy state and upon acid-base parameters of the brain in arterial hypotension and in asphyxia. Acta Neurol Scand 1971: 47: 233–253.PubMedCrossRefGoogle Scholar
  292. Nilsson L, Siesjö BK. Influence of anesthesia on the balance between production and utilization of energy in the brain. J Neurochem 1974: 23: 29–36.PubMedCrossRefGoogle Scholar
  293. Nilsson L, Siesjö BK. The effect of phenobarbitone anaesthesia on blood flow and oxygen consumption in the rat brain. Acta Anaesthesiol Scand 1975: suppl 57: 18–24.Google Scholar
  294. Nordström CH. Siesjö BK. Influence of phenobarbital on changes in the metabolites of the energy reserve of the cerebral cortex following complete ischemia. Acta Physiol Scand 1978: 104: 271–280.PubMedCrossRefGoogle Scholar
  295. Nugent M, Artru AA, Michenfelder JD. Cerebral metabolic, vascular and protective effects of midazolam maleate. Anesthesiology 1982: 56: 172–176.PubMedCrossRefGoogle Scholar
  296. Nussmeier NA, Arlund C, Slogoff S. Neuropsychiatric complications after cardiopulmonary bypass: Cerebral protection by barbiturate. Anesthesiology 1986: 64:165–170.PubMedCrossRefGoogle Scholar
  297. Nussmeier NA, Fish KJ. Neuropsychologic dysfunction after cardiopulmonary bypass: A comparison of two institutions. Anesthesiology 1987: 67: A 14.Google Scholar
  298. Obrist WD, Gennarelli TA, Segawa H, et al. Regulation of cerebral blood flow to neurological status and outcome in head-injured patients. J Neurosurg 1979: 51: 292–300.PubMedCrossRefGoogle Scholar
  299. Oguchi K, Arakawa K, Nelson SR, Samson F. The influence of droperidol, diazepam and physiostigmine on ketamine-in-duced behavior and brain regional glucose utilization in rat. Anesthesiology 1982: 57: 353–358.PubMedCrossRefGoogle Scholar
  300. Ogura K, Takayasu M, Decey RG. Differential effects of pentobarbital on intracerebral arterioles and venules of rats in vitro. Neurosurgery 1991: 28: 537–541.PubMedCrossRefGoogle Scholar
  301. Ong BY, Maclntyre CJ, Bose D, et al. Phenobarbital prevents loss of cerebral blood flow autoregulation after asphyxia in newborn lambs. Anesth Analg 1986: 65: S115.Google Scholar
  302. Onodera H, Sato G, Kogure K. GABA and benzodiazepine receptors in the gerbil brain after transient ischaemia: Demonstration by quantitative receptor autoradiography. J Cereb Blood Flow Metab 1987: 7: 82–88.PubMedCrossRefGoogle Scholar
  303. Oren RE, Rasool NA, Rubinstein EH. Effect of ketamine on cerebral cortical blood flow and metabolism in rabbits. Stroke 1987: 18: 441–44.PubMedCrossRefGoogle Scholar
  304. Orser B. Propofol-induced neuroexcitation and receptor de-sensitization. Can J Anaesth 1994: 41: 366–371.PubMedCrossRefGoogle Scholar
  305. Otsuka T, Wei L, Acuff VR, et al. Variation in local cerebral blood flow response to high-dose pentobarbital sodium in the rat. Am J Physiol 1991: 261: H110-H120.PubMedGoogle Scholar
  306. Otsuka T, Wei L, Bereczki D, et al. Pentobarbital produces dissimilar changes in glucose influx and utilization in brain. Am J Physiol 1991: 261: R265–75.PubMedGoogle Scholar
  307. Owen H, Spence AA. Etomidate (editorial). Br J Anaesth 1984: 56: 555–556.PubMedCrossRefGoogle Scholar
  308. Paepe PD, Belpaire FM, Rosseel MT, et al. Influence of hypovolemia on the pharmacokinetics and the electroencepha-lographic effect of propofol in the rat. Anesthesiology 2000: 93: 1482–1490.PubMedCrossRefGoogle Scholar
  309. Peters CE, Korcok J, Gelb AW, Wilson JX. Anesthetic concentrations of propofol protect against oxidative stress in primary astrocyte cultures. Anesthesiology 2001: 94: 313–321.PubMedCrossRefGoogle Scholar
  310. Petersen KD, Landsfeldt U, Cold GE, Pedersen CB, Mau S, Rasmussen G, Pedersen HS. A prospective, randomized study of ICP during three anesthetics for elevtive craniotomy. A multicenter study. Acta Anaesthesiol Scand 1999: (suppl) 114: 101.Google Scholar
  311. Pfenninger E, Grünert A, Bowdler I, Kilan J. The effect of ketamine on intracranial pressure during haemorrhagic shock under the conditions of both spontaneous breating and controlled ventilation. Acta Neurochir 1985: 78: 113–118.PubMedCrossRefGoogle Scholar
  312. Pfenninger E, Reith a. Ketamine and intracranial pressure. In Status of Ketamine in Anesthesiology, Domino EF (ed), NPP Books 1990: 109–118.Google Scholar
  313. Piatt JH, Schiff SJ. High dose barbiturate therapy in neurosurgery and intensive care. Neurosurgery 1984: 15: 427–444.PubMedCrossRefGoogle Scholar
  314. Pickerodt VWA, McDowall DG, Coroneos NJ, Keaney NR Effect of althesin on cerebral perfusion, cerebral metabolism and intracranial pressure in the anaesthetized baboon. Br J Anaesth 1972: 44: 751–758.PubMedCrossRefGoogle Scholar
  315. Pierce EC, Lambertsen CJ, Deutsch S, et al. Cerebral cincula-tion and metabolism during thiopental anesthesia and hyperventilation in man. J Clin Invest 1962: 41: 1664–1671.PubMedCrossRefGoogle Scholar
  316. Pinaud M, Lelausque JN, Fauchoux N, Chetanneau A. Effects of propofol on cerebral hemodynamics and metabolism in patients with head trauma. Anesthesiology 1988: 69: A569.CrossRefGoogle Scholar
  317. Preziosi P, Vacca M. Etomidate and corticothropic axis. Arch Intern Pharmacodyn 1982: 256: 308–310.Google Scholar
  318. Prior PF, Maynard DE, Brierley JB. EEG monitoring for the control of anaesthesia produced by the infusion of althesin in primates. Br J Anaesth 1978: 50: 993–1001.PubMedCrossRefGoogle Scholar
  319. Prior JGL, Hinds CJ, Williams J, Prior PE. The use of etomidate in the management of severe head injury. Intensive Care Med 1983: 9: 313–320.PubMedCrossRefGoogle Scholar
  320. Procaccio F, Bingham RM, Hinds CJ, Prior PF,. Continuous EEG and ICP monitoring as a guide to the administration of althesin sedation in severe head injury. Intensive Care Med 1988: 14: 148–155.PubMedCrossRefGoogle Scholar
  321. Puhringer F, Hormann CH, Langmayr J, et al. The effect of alfentanil on cerebrospinal fluid pressure in human volunteers. Eur J Anaesthesiol 1997: 14: 211–214.PubMedCrossRefGoogle Scholar
  322. Ramani R, Todd MM, Warner DS. A dose-response study of the influence of propofol on cerebral blood flow, metabolism and the electroencephalogram in the rabbit. J Neurosurg Anesthesiol 1992: 4: 110–119.PubMedCrossRefGoogle Scholar
  323. Rasmussen NJ, Rosendal T, Overgaard J. Althesin in neurosurgical patients: Effects on cerebral haemodynamics and metabolism. Acta Anaesthesiol Scand 1978: 22: 257–269.PubMedCrossRefGoogle Scholar
  324. Ratnakumari L, Hemmings HC. Inhibition by propofol of [H]-batrachotoxinin-A 20-(benzoate binding to voltage-dependent sodium channels in the rat cortical synaptosomes. Br J Pharmacol 1996: 119: 1498–1504.PubMedCrossRefGoogle Scholar
  325. Ratnakumari L, Hemmings HC. Effects of propofol on sodium channel-dependent sodium influx and glutamate release in rat cerebrocortical synaptosomes. Anesthesiology 1997: 86: 428–439.PubMedCrossRefGoogle Scholar
  326. Ravussin P, Guinard JP, Ralley F, Thorin D. Effect of propofol on cerebrospinal fluid pressure and cerebral perfusion pressure in patients undergoing craniotomy. Anaesthesia 1988a: 43 (suppl): 37–41.PubMedCrossRefGoogle Scholar
  327. Ravussin P, Berger-Bayer M, Nydegger M, Freeman J. Thiopentone-isoflurane vs propofol in neuroanesthesia for intracranial surgery. Anesthesiology 1988b: 69: A577.CrossRefGoogle Scholar
  328. Ravussin P, de Tribolet N. Total intravenous anesthesia with propofol for burst suppression in cerebral aneurysm surgery: Preliminary report of 42 patients. Neurosurgery 1993: 32: 236–240.PubMedCrossRefGoogle Scholar
  329. Rehberg B, Duch DS. Suppression of central nervous system sodium channels by propofol. Anesthesiology 1999: 91: 512–520.PubMedCrossRefGoogle Scholar
  330. Reicher D, Bhalla P, Rubinstein EH. Cholinergic cerebral vasodilator effect of ketamine in rabbits. Stroke 1987: 18: 445–449.PubMedCrossRefGoogle Scholar
  331. Reinstrup P, Ståhl N, Mellergârd P, et al. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery 2000: 47: 701–710.PubMedGoogle Scholar
  332. Renou AM, Vernhiet J, Orgogozo JM, Caille JM. Effets de Palfatesine (CT 1341) sur le debit sanguin et le metabolisme cerebral chez l’homme, modifications globales er regionales. Ann Anesthesiol Fr 1976: 17: 1247–1254.PubMedGoogle Scholar
  333. Renou AM, Vernhiet J, Macrez P et al. Cerebral blood flow and metabolism during etomidate anaesthesia in man. Br J Anaesth 1978: 50: 1047–1051.PubMedCrossRefGoogle Scholar
  334. Roach GW, Newman MF, Murkin JM, et al. Ineffectiveness of burst suppression therapy in mitigating perioperative cerebrovascular dysfunction. Anesthesiology 1999: 90: 1255–1264.PubMedCrossRefGoogle Scholar
  335. Robertson SC, Brown III P, Loftus CM. Effects of etomidate administration on cerebral collateral flow. Neurosurgery 1998: 43: 317–324.PubMedCrossRefGoogle Scholar
  336. Rockoff MA, Marchall LF, Shapiro HM. High-dose barbiturate therapy in humans: A clinical review of 60 patients. Ann Neurol 1979: 6: 194–199.PubMedCrossRefGoogle Scholar
  337. Sato K, Wu J, Kikuchi T, Wang Y, et al. Differential effects of ketamine and pentobarbitone on acetylcholine release from the rat hippocampus and striatum. Br J Anaesth 1996: 77: 381–384.PubMedCrossRefGoogle Scholar
  338. Safar P, Stezoski W, Nemoto EM. Amelioration of brain damage after 12 minutes cardiac arrest in dogs. Arch Neurol 1976: 33: 91–95.PubMedCrossRefGoogle Scholar
  339. Saija A, Princi P, DePasquale R, Costa G. Modifications of the permeability of the blood-brain barrier and local cerebral metabolism in pentobarbital- and ketamine-anaesthetized rats. Neuropharmacology 1989: 28: 997–1002.PubMedCrossRefGoogle Scholar
  340. Sakabe T, Tsutsui T, Maekawa T, et al. Local cerebral glucose utilization during nitrous oxide and pentobarbital anesthesia in rats. Anesthesiology 1985: 63: 262–266.PubMedCrossRefGoogle Scholar
  341. Sakai K, Cho S, Fukusaki M, et al. The effects of propofol with and without ketamine on human cerebral blood flow velocity and CO2 response. Anesth Analg 2000: 90: 377–382.PubMedGoogle Scholar
  342. Sari A, Okuda Y, Takeshita H. The effects of thalamonal on cerebral circulation and oxygen consumption in man. Br J Anaesth 1972: 44: 330–334.PubMedCrossRefGoogle Scholar
  343. Sari A, Maekawa T, Tohjo M, et al. Effects of althesin on cerebral blood flow and oxygen consumption in man. Br J Anaesth 1976: 48: 545–550.PubMedCrossRefGoogle Scholar
  344. Saul TG, Ducker TB. Effect of intracranial pressure monitoring and aggressive treatment on mortality in severe head injury. J Neurosurg 1982: 56: 498–503.PubMedCrossRefGoogle Scholar
  345. Scheller MS, Drummond JC, Todd MM, et al. Are recommendations regarding barbiturate protection during bypass justified? Anesthesiology 1986b: 65: 230–231.PubMedCrossRefGoogle Scholar
  346. Schregel W, Schäfermayer H, Müller C, et al. Einfluss von Halothan, Alfentanil und Propofol auf Flussgeschwindigkeiten, “Gefässquerschnit” und “Volumenfluss” in der a. Cerebri Media. Anaesthesist 1992: 41: 21–26.PubMedGoogle Scholar
  347. Schregel W, Geisser S, Winkling M, Schaefermayer H, Cunitz G. Transcranial Doppler monitoring during induction of anesthesia: Effects of propofol, thiopental, and hyperventilation in patients with large malignant brain tumors. J Neurosurg Anesthesiol. 1993: 5: 86–93.PubMedGoogle Scholar
  348. Schubert A, Licina MG, Lineberry PJ. The effect of ketamine on human somatosensory evoked potentials and its modification by nitrous oxide. Anesthesiology 1990: 72: 33–39.PubMedCrossRefGoogle Scholar
  349. Schulte M, Esch J, Pfeiffer G, Hiemig I, Entzian W The influence of intravenous anaesthetic agents on primarily increased intracranial pressure. Acta Neurochir 1978: 45: 15–25.CrossRefGoogle Scholar
  350. Schulte D, Callado LF, Davidson C, et al. Propofol decreases stimulated dopamine release in the rat nucleus accumbens by a mechanism indipendent of dopamine D2 GABAA and NMDA receptors. Br J Anaesth 2000: 84: 250–253.PubMedCrossRefGoogle Scholar
  351. Schwedler M, Miletich DJ, Albrecht RF. Cerebral blood flow and metabolism following ketamine administration. Can Anaesth Soc J 1982: 29: 222–226.PubMedCrossRefGoogle Scholar
  352. Sear JW, Walters FJM, Wilkins DG, Willatts SM. Etomidate by infusion for neuroanaesthesia. Kinetic and dynamic interactions with nitrous oxide. Anaesthesia 1984: 39: 12–18.PubMedCrossRefGoogle Scholar
  353. Selman RW, Spetzler RF, Roessmann UR, et al. Barbiturate infusion coma therapy for focal cerebral ischaemia. J Neurosurg 1981: 55: 220–226.PubMedCrossRefGoogle Scholar
  354. Seubert CN, Morey TE, Martynyik AE, et al. Midazolam selectively potentiates the A2A-but not A1-receptor-mediated effects of adenosine. Anesthesiology 2000: 92: 567–577.PubMedCrossRefGoogle Scholar
  355. Shapira Y, Artru AA, Lam AM. Ketamine decreases cerebral infarct volume and improves neurological outcome following experimental head injury in rats. J Neurosurg Anesthesiol 1992: 4: 231–240.PubMedCrossRefGoogle Scholar
  356. Shapira Y, Lam AM, Artru AA, Eng C, Soltow L. Ketamine alters calcium and magnesium in brain tissue following experimental head trauma in rats. J Neurosurg Anesthesiol 1993: 13: 962–968.Google Scholar
  357. Shapiro HM, Wyte SR, Harris AB, Galindo A. Acute intraoperative intracranial hypertension in neurosurgical patients. Anesthesiology 1972a: 37: 399–405.PubMedCrossRefGoogle Scholar
  358. Shapiro HM, Wyte SR, Harris AB. Ketamine anaesthesia in patients with intracranial pathology. Br J Anaesth 1972b: 44: 1200–1204.CrossRefGoogle Scholar
  359. Shapiro HM, Galindo A, Wyte SR, Harris AB. Rapid intraoperative reduction of intracranial pressure with thiopental. Br J Anaesth 1973: 45: 1057–1061.PubMedCrossRefGoogle Scholar
  360. Shapiro HM, Wyte SR, Loeser J. Barbiturate augmented hypothermia for reduction of persistent intracranial hypertension. J Neurosurg 1974: 40: 90–100.PubMedCrossRefGoogle Scholar
  361. Shapiro HM. Barbiturates in brain ischaemia. Br J Anaesth 1985: 57: 82–95.PubMedCrossRefGoogle Scholar
  362. Shapiro HM. Anaesthesia effects upon cerebral blood flow, cerebral metabolism, electroencephalogram, and evoked potentials. In: Miller DR (ed) Anesthesia, Churchill Livingstone, New York, Edinburgh, London, 1986: 2: 1249–1288.Google Scholar
  363. Shimaoka M, Iida T, Ohara A, et al. Ketamine inhibits nitric oxide production in mouse-activated macrophage-like cells. Br J Anaesth 1996: 77: 238–242.PubMedCrossRefGoogle Scholar
  364. Sidi A, Cotev S, Hadani M, et al. Long-term barbiturate infusion to reduce intracranial pressure. Critical Care Medicin 1983: 11:478–481.CrossRefGoogle Scholar
  365. Siesjö BK. Cerebral circulation and metabolism. J Neurosurg 1984: 60: 883–908.PubMedCrossRefGoogle Scholar
  366. Simpson VJ, Blednov Y. Propofol produces differences in behavior but not choride channel function between selected lines of mice. Anesth Analg 1996: 82: 327–331.PubMedGoogle Scholar
  367. Smith AL, Hoff JT, Nielsen SL, Larson CP. Barbiturate protection in acute focal cerebral ischaemia. Stroke 1974: 5: 1–7.PubMedCrossRefGoogle Scholar
  368. Smith AL, Marque JJ. Anesthetics and cerebral edema. Anesthesiology 1976: 45: 64–72.PubMedCrossRefGoogle Scholar
  369. Smith DS, Rehncrona S, Siesjö BK. Inhibitory effects of different barbiturates on lipid peroxidation in the brain tissue in vitro: Comparison with the effects of promethazine and chlorpromazine. Anesthesiology 1980: 53: 186–194.PubMedCrossRefGoogle Scholar
  370. Smith DS, Keykhah MM, O’Neill JJ, Harp JR. The effect of etomidate pretreatment on cerebral high energy metabolites, lactate, and glucose during severe hypoxia in the rat. Anesthesiology 1989: 71: 438–443.PubMedCrossRefGoogle Scholar
  371. Smith I, White PF, Nathanson M, Gouldson R. Propofol. An update of its clinical use. Anesthesiology 1994: 81:1005–1043.PubMedCrossRefGoogle Scholar
  372. Smith M, Sneyd JR, Ross DA, Henry TR. Effects of propofol sedation or seizures and intracranially recorded epileptiform activity in pateints with partial epilepsy. Anesthesiology 1995: 82: 843–851.CrossRefGoogle Scholar
  373. Snead OC, Yu RK, Huttenlocher PR. Gammahydroxybuturate: correlation of serum and cerebrospinal fluid levels with electroencephalographic and behavioral effects. Neurology 1976: 26: 51–56.PubMedCrossRefGoogle Scholar
  374. Sneyd JR. Propofol and epilepsy. Br J Anaesth 1999: 82: 168–169.PubMedCrossRefGoogle Scholar
  375. Snyder BD, Ramirez-Lassepas M, et al. Failure of thiopental to modify global anoxic injury. Stroke 1979: 10: 135–141.PubMedCrossRefGoogle Scholar
  376. Sokoll MD, Kassell NF, Davles LR. Large dose thiopental anesthesia for intracranial aneurysm surgery. Neurosurgery 1982: 10: 555–562.PubMedCrossRefGoogle Scholar
  377. Spahr-Schopfer I, Vutskits L, Toni N, et al. Differential neurotoxic effects of propofol on dissociated cortical cells and organotypic hippocampal cultures. Anesthesiology 2000: 92: 1408–1417.PubMedCrossRefGoogle Scholar
  378. Spetzler RF, Wilson CB, Weinstein P, et al. Normal perfusion pressure breakthrough theory. In: Clinical Neurosurgery, Williams and Wilkins Company, 1978: 26: 651–672.Google Scholar
  379. Spetzler RF, Selman WR, Roski RA, Bonstelle C. Cerebral revascularization during barbiturate coma in primates and humans. Surg Neurol 1982: 17: 111–115.PubMedCrossRefGoogle Scholar
  380. Steen PA, Milde JH, Michenfelder JD. Cerebral metabolic and vascular effects of barbiturate therapy following complete global ischaemia. J Neurochem 1978: 31: 1317–1324.PubMedCrossRefGoogle Scholar
  381. Steen PA, Milde JH, Michenfelder JD. No barbiturate protection in a dog model of complete cerebral ischaemia. Ann Neurol 1979: 5: 343–349.PubMedCrossRefGoogle Scholar
  382. Steen PA, Michenfelder JD. Barbiturate protection in tolerant and nontolerant hypoxic mice. Anesthesiology 1979: 50: 404–408.PubMedCrossRefGoogle Scholar
  383. Steen PA, Michenfelder JD. Neurotoxicity of Anaesthetics. Anesthesiology 1979: 50: 437–453.PubMedCrossRefGoogle Scholar
  384. Steen PA, Newberg L, Milde JH, Michenfelder JD. Hypothermia and barbiturates: Individual and combined effects on canine cerebral oxygen consumption. Anesthesiology 1983: 58: 527–532.PubMedCrossRefGoogle Scholar
  385. Stephan H, Sonntag H, Schenk HD, Kohlhausen S. Einfluss von Disoprivan (Propofol) auf die Durchblutung und Sauerstoffverbrauch des Gehirns and die CO2 Reaktivität der Hirngefässe beim Menschen. Anaesthetist 1987: 36: 60–65.Google Scholar
  386. Stephan H, Sonntag H, Seyde WC, Henze T, Textor J. Energie-und Aminosäurenstoffwechsel des Menschlichen Gehirns unter Desoprivan und verschiedenen paCCV Werten. Anaesthesist 1988: 37: 297–304.PubMedGoogle Scholar
  387. Stewart PA, Hayakawa EM, Carlen PL. Ethanol and pentobarbital increase blood-brain barrier permeability to horseradish peroxidase. Brain Res 1988: 443: 12–20.PubMedCrossRefGoogle Scholar
  388. Stockard JJ, Bickford R. The neurophysiology of anesthesia. In: Gordon E (ed), A Basis and Practice of Neuroanesthesia. Amsterdam:Excerpta Medica 1975: 3–46.Google Scholar
  389. Strebel S, Kaufmann M, Guardiola P-M, Schaefer H-G. Cerebral vasomotor responsiveness to carbon dioxide is preserved during propofol and midazolam anaesthesia in humans. Anaesth Analg 1994: 78: 884–888.CrossRefGoogle Scholar
  390. Strebel S, Kaufmann M, Maitre L, Scgaefer HG. Effects of ketamine on cerebral blood flow velocity in humans. Influence of pretreatment with midazolam or esmolol. Anaesthesia 1995: 50: 223–228.PubMedCrossRefGoogle Scholar
  391. Strebel S, Lam AM, Matta B, et al. Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia. Anesthesiology 1995: 83: 66–76.PubMedCrossRefGoogle Scholar
  392. Stullken AH, Milde JH, Michenfelder JD, Tinker JH. The nonlinear responses of cerebral metabolism to low concentrations of halothane, enflurane, isoflurane and thiopental. Anesthesiology 1977: 46: 28–34.PubMedCrossRefGoogle Scholar
  393. Scndergård W. Intracranial pressure during general anaesthesia. Dan Med Bull 1961: 8: 18–26.Google Scholar
  394. Taguchi K, Hagiwara Y, Suzuki Y, Kubo T. Effects of morphine on release of acetylcholine in the rat striatum: An in vivo micro dialysis study. Naunyn-Schmiedbergs Archives of Pharmacology 1993: 347: 9–13.Google Scholar
  395. Takeshita H, Okuda Y, Sari A. The effects of ketamine on cerebral circulation and metabolism in man. Anesthesiology 1972: 36: 69–75.PubMedCrossRefGoogle Scholar
  396. Takahashi T, Takasaki M, Namiki A, Dohi S. Effects of althesin on cerebrospinal fluid pressure. Br J Anaesth 1973: 45: 179–184.PubMedCrossRefGoogle Scholar
  397. Tamasy V, Koranyi L, Tekeres M. EEG and multiple unit activity during ketamine and barbiturate anaesthesia. Br J Anaesth 1975: 47: 1247–1251.PubMedCrossRefGoogle Scholar
  398. Tanalian DL, Kosek P, Mody I, Maclver MB. The role of the GABAa receptor/chloride channel complex in anesthesia. Anesthesiology 1993: 78: 757–776.CrossRefGoogle Scholar
  399. Taverna FA, Cameron RB, Hampson DL, et al. Sensitivity of AMPA receptors to pentobarbital. Eur J Pharmacol 1994: 267: R3–5.PubMedCrossRefGoogle Scholar
  400. Terasako K, Nakamura K, Toda H, et al. Barbiturates inhibit endothelium-dependent and independent relaxations mediated by cyclic GMP. Anesth Analg 1994: 78: 823–830.PubMedCrossRefGoogle Scholar
  401. Thompson GE. Ketamine-induced convulsions. Anesthesiology 1972: 37: 662–663.PubMedCrossRefGoogle Scholar
  402. Thomson AM, West DC, Lodge D. An N-methylaspartate receptor-mediated synapse in rat cerebral cortex: a site of action of ketamine? Nature 1985: 313: 479–481.PubMedCrossRefGoogle Scholar
  403. Todd MM, Chadwick HS, Shapiro HM, et al. The neurologic effects of thiopental therapy following experimental cardiac arrest in cats. Anesthesiology 1982: 57: 76–86.PubMedCrossRefGoogle Scholar
  404. Todd MM, Drummond JC, Sang UH. The hemodynamic consequences of high-dose methohexital anesthesia in humans. Anesthesiology 1984a: 61: 495–501.PubMedCrossRefGoogle Scholar
  405. Todd MM, Drummond JC. A comparison of the cerebrovascular and metabolic effects of halothane and isoflurane in the cat. Anesthesiology 1984b: 60: 276–282.PubMedCrossRefGoogle Scholar
  406. Todd MM, Drummond JC, Sang UH. The hemodynamic consequences of high-dose thiopental anesthesia. Anesth Analg 1985: 64: 681–687.PubMedCrossRefGoogle Scholar
  407. Todd MM, Drummond JC, Sang H. Hemodynamic effects of high dose pentobarbital: Studies in elective neurosurgical patients. Neurosurgery 1987: 20: 559–563.CrossRefGoogle Scholar
  408. Todd MM, Hindman BJ, Warner DS. Barbiturate protection and cardiac surgery: A different result (editorial). Anesthesiology 1991: 74: 402–405.PubMedCrossRefGoogle Scholar
  409. Todd MM, Wu B, Warner DS, Maktabi M. The dose-related effects of nitric oxide synthase inhibition on cerebral blood flow during isoflurane and pentobarbital anesthesia. Anesthesiology 1994: 80: 1128–1136.PubMedCrossRefGoogle Scholar
  410. Traeger SM, Henning RJ, Doblin W, et al. Hemodynamic effects of pentobarbital therapy for intracranial hypertension. Critical care Medicine 1983: 11: 697–701.PubMedCrossRefGoogle Scholar
  411. Turner JM, Coroneos NJ, Gibson RM, et al. The effect of althesin on intracranial pressure in man. Br J Anaesth 1973: 45: 168–171.PubMedCrossRefGoogle Scholar
  412. Tsuji T, Chiba S. Responses of isolated canine and simian basilar arteries to thiopentone by a newly designed pharmacological method for measuring vascular responsiveness. Acta Neurochirurgica 1986: 80: 57–61PubMedCrossRefGoogle Scholar
  413. Upton RN, Ludbrook GL, Grant C, Gray EC. In vivo relationships between the cerebral pharmacokinetics and pharmacodynamics of thiopentone in sheep after short-term administration. J Pharmacokinet Biopharm 1996: 24: 1–18.PubMedGoogle Scholar
  414. Upton RN, Ludbrook GL, Grant C, Doolette DJ. The effect of altered cerebral blood flow on the cerebral kinetics of thiopental and propofol in sheep. Anesthesiology 2000: 93: 1085–1094.PubMedCrossRefGoogle Scholar
  415. van Aken J, Roily G. Influence of etomidate, a new short acting anaesthetic agent, on cerebral blood flow in man. Acta Anaesthesiol Belg 1976: suppl 27: 175–180.Google Scholar
  416. van Aken J, Roily G, Van Weehaeghe X, De Deyne C. Can nitrous oxide be replaced by propofol in neuroanaesthesia? Preliminary results. Eur J Anaesthesiol 1990: 7: 483–491.Google Scholar
  417. Vandesteene A, Trempont V, Engelman E, et al. Effect of propofol on cerebral blood flow and metabolism in man. Anaesthesia 1988: 43 (suppl): 42–43.PubMedCrossRefGoogle Scholar
  418. van Hemelrijck J, van Aken H, Plets C, Goffin J. The effects of propofol on ICP and cerebral perfusion pressure in patients with brain tumors. Anesthesiology 1988: 69: A570.CrossRefGoogle Scholar
  419. van Hemelrijck J, Tempelhoff R, Jellich WS, White PR Comparison of thiopental isoflurane-N20, propofol-N20 and propofol alone for neuroanesthesia. Anesthesiology 1990a: 73: No3A A167.Google Scholar
  420. van Hemelrijck J, Fitch W, Mattheussen M, et al. Effect of propofol on cerebral circulation and autoregulation in the babbon. Anesth Analg 1990b: 71: 49–54.PubMedGoogle Scholar
  421. van Hemelrijck J, Tempelhoff R, Jellich WS, White PR Use of EEG for determining propofol requirement during neuroanesthesia. Anesthesiology 1990c: 73: No 3A: A202.CrossRefGoogle Scholar
  422. van Hemelrijck J, Fitch W, Mattheussen M, et al. Effect of propofol on cerebral circulation and autoregulation in the baboon. Anesth Analg 1990d: 71: 49–54.PubMedGoogle Scholar
  423. van Reempts J, Borgers M, van Eyndhoven J, Hermans C. Protective effects of etomidate in hypoxic-ischaemic brain damage in the rat. A morphologic assessment. Experimental Neurology 1982: 76: 181–195.PubMedCrossRefGoogle Scholar
  424. Vayer P, Mandel P, Maitre M. Conversion of gamma-hydorxy-butyrate to gamma-aminobutyrate in vitro. J Neurochem 1985: 45: 810–814.PubMedCrossRefGoogle Scholar
  425. Vernhiet J, Renou AM, Orgogozo JM, et al. Effects of a diazepam-fentanyl mixture on cerebral blood flow and oxygen consumption in man. Br J Anaesth 1978: 50: 165–169.PubMedCrossRefGoogle Scholar
  426. Veselis RA, Reinsei RA, Wronski M, et al. EEG and memory effects of low-dose infusions of propofol. Br J Anaesth 1992: 69: 246–254.PubMedCrossRefGoogle Scholar
  427. Veselis RA, Reinsei RA, Beattie BJ, et al. Midazolam changes cerebral blood flow in discrete brain regions: an H2 15O positron emission tomography study. Anesthesiology 1997: 87: 1106–1117.PubMedCrossRefGoogle Scholar
  428. Vuyk J, Hennis PJ, Burm AGL, et al. Comparison of midazolam and propofol in combination with alfentanil for total intra-veneous anesthesia. Anesth Analg 1990: 71: 645–650.PubMedCrossRefGoogle Scholar
  429. Wada DR, Harashima H, Ebling WF, et al. Effects of thiopental on regional blood flows in the rat. Anesthesiology 1996: 84: 596–604.PubMedCrossRefGoogle Scholar
  430. Wagner RL, White PF, Kan PB, et al. Inhibition of adrenal steroidogenesis by the anaesthetic etomidate. N Engl J Med 1984: 310: 1415–1421.PubMedCrossRefGoogle Scholar
  431. Wagner RL, White PF. Etomidate inhibits adrenocortical function in surgical patients. Anesthesiology 1984: 61: 647–651.PubMedCrossRefGoogle Scholar
  432. Ward JD, Becker DP, Miller JD, et al. Failure of prophylactic barbiturate coma in the treatment of severe head injury. J Neurosurg 1985: 62: 383–388.PubMedCrossRefGoogle Scholar
  433. Watson JC, Drummond JC, Patel PM, Sano T, Akrawi W, Sang U H. An assessment of the cerebral protective effects of etomidate in a model of incomplete forebrain ischemia in the rat. Neurosurgery 1992: 30: 540–544.PubMedCrossRefGoogle Scholar
  434. Watts ADJ, Eliasziw M, Gelb AW. Propofol and hyperventilation for the treatment of increased intracranial pressure in rabbits. Anesth Analg 1998: 87: 564–568.PubMedGoogle Scholar
  435. Wauquier A, Van den Broeck WAE, Verheyen JL, Janssen PAJ. Electroencephalographic study of the short-acting hypnotics etomidate and methohexital in dogs. Europ J Pharmacol 1978: 47: 367–377.CrossRefGoogle Scholar
  436. Wauquier A, Achton D, Clincke G, Niemegers CJE. Anti-hypoxic effects of etomidate, thiopental and methohexital. Arch Int Pharmacodyn Ther 1981: 249: 330–334.PubMedGoogle Scholar
  437. Wauquier A. Brain protective properties of etomidate and flunarizine. J Cereb Blood Flow Metab 1982: 2 (suppl 1) S53-S56.PubMedGoogle Scholar
  438. Wechsler RL, Dripps RD, Kety SS. Blood flow and oxygen consumption of the human brain during anesthesia produced by thiopental. Anesthesiology 1951: 12: 308–313.PubMedCrossRefGoogle Scholar
  439. Weinstabl C, Mayer N, Hammerle AF, Spiss CK. Effekte von Propofolbolusgaben auf das Intrakranielle Druckverhalten beim Schädel-Hirn-Trauma. Anaesthesist 1990: 39: 521–524.PubMedGoogle Scholar
  440. Weir DL, Goodchild CS, Graham DI. Effects on indices of cerebral ischemia. J Neurosurg Anesthesiol 1989: 1: 284–289PubMedCrossRefGoogle Scholar
  441. Weir P, Wu J, Tremper K, Buchsbaum M, et al. Ketamine induced changes in cerebral glucose utilization in man as measured by PET scan. Anesth Analg 1992: 74: S344.Google Scholar
  442. Wendling WW, Daniels FB, Chen D, et al. Ketamine directly dilates bovine cerebral arteries by acting as a calcium entry blocker. J Neurosurg Anesthesiol 1994: 6: 186–192.PubMedGoogle Scholar
  443. Werner C, Hoffman WE, Segil LJ, et al. Effects of propofol on cerebral and spinal cord blood flow autoregulation in rats. Anesthesiology 1990: 73: No 3A, A 694.Google Scholar
  444. Werner C, Hoffman WE, Kochs E, et al. The effects of propofol on cerebral blood flow in correlation to cerebral blood flow velocity in dogs. J Neurosurg Anesthesiol 1992: 4: 41–46PubMedCrossRefGoogle Scholar
  445. Werner C, Reeker W, Engelhard K, et al. Ketamin acemate and S-(+)-ketamine. Cerebrovascular effects and neuroprotection following focal ischemia. Anaesthesist 1997: 46 (suppl 1): S55–60.PubMedCrossRefGoogle Scholar
  446. Wiklund L. Reversal of sedation and respiratory depression after anaesthesia by the combined use of physiostigmine and nalaxone in neurosurgical patients. Acta Anaesthesiol Scand 1986: 30: 374–378.PubMedCrossRefGoogle Scholar
  447. Williams GL, Pollay M, Seale T, Hisey B, Roberts RA. Benzodiazepine receptors and cerebrospinal fluid formation. J Neurosurg 1990: 72: 759–762.PubMedCrossRefGoogle Scholar
  448. Winters WD. Epilepsia or anaesthesia with ketamine. Anesthesiology 1972: 36: 309–312.PubMedCrossRefGoogle Scholar
  449. Wolff J, Carl P, Hansen PB, H¢gskilde S, et al. Effects of eltanolone on cerebral blood flow and metabolism in healthy volunteers. Anesthesiology 1994: 81: 623–627.PubMedCrossRefGoogle Scholar
  450. Wolfson LI, Sakurada O., Sokoloff L. Effects of γ-butyrolactone on local cerebral glucose utilization in the rat. J Neurochem 1977: 29: 777–783.PubMedCrossRefGoogle Scholar
  451. Wu J, Kikuche T, Wang Y, et al. Nox- concetrations in the rat hippocampus and striatum have no direct relationship to anaesthesia induced by ketamine. Br J Anaesth 2000: 84: 183–189.PubMedCrossRefGoogle Scholar
  452. Wyte SR, Shapiro HM, Turner P, Harris AB. Ketamine-induced intracranial hypertension. Anaesthesiology 1972: 36: 174–176.CrossRefGoogle Scholar
  453. Xuan Y-T, Glass PSA. Propofol regulation of calcium entry pathways in cultured A10 and rat aortic smooth muscle cells. Br J Pharmacol 1996: 117: 5–12.PubMedCrossRefGoogle Scholar
  454. Yakushiji T, Nakamura K, Hatano Y, Mori K. Conparison of the vasodilator effects of thiopentone and pentobarbitone. Can J Anaesth 1992: 39: 604–609.PubMedCrossRefGoogle Scholar
  455. Yano M, Ikeda Y, Kobayshi S, et al. The outcome with barbiturate therapy in severe head injuries. In: Miller JD, Teasdale GM, Rowan JO, Galvraith SL, Mendelow AD (eds), Intracranial Pressure VI, Springer Verlag, Berlin, Heidelberg 1986: 769–773.CrossRefGoogle Scholar
  456. Yatsu FM, Diamond I, Graziano C, Linquist P. Experimental brain ischaemia: Protection from irreversible damage with a rapid-acting barbiturate (methohexital). Stroke 1972: 3: 726–732.PubMedCrossRefGoogle Scholar
  457. Yonas H, Dujovny M, Nelson D, et al. The controlled delivery of thiopental and delayed cerebral revascularization. Surg Neurol 1981: 15: 27–34.PubMedCrossRefGoogle Scholar
  458. Yoshida K, Marmarou A, Furuse M. The metabolic protection of hypoxia by etomidate evaluated by magnetic resonance spectroscopy. In: Intracranial Pressure VIII. Avezaat CJJ, van Eijndhoven JHM, Maas AIR, Tans JThJ (eds). Springer Verlag 1993: 273–275.CrossRefGoogle Scholar
  459. Zacny JP, Lichtor JL, Thompson W, Apfelbaum JL. Propofol at a subanesthetic dose may have abuse potential i healthy volunteers. Anesth Analg 1993: 77: 544–552.PubMedCrossRefGoogle Scholar
  460. Zaiden JR, Klochany A, Martin WM, et al. Effect of thiopental on neurologic outcome following coronary artery bypass grafting. Anesthesiology 1991: 74: 406–411.CrossRefGoogle Scholar
  461. Zattoni J, Siani C, Balestrero MA et al. Effetto ipotensivo intracranico ed arterioso sistemico di 0.35 e 0.80 mg/kg ev di Diprivan durante neuroanestesia in ventilazione controllata. In: Atti 3rd Riunione Italo-Francece di Neuroanestesia e Rianimazione. Capri, 1986: 54Google Scholar
  462. Zhan RZ, Fujiwara N, Endoh H, et al. Thiopental inhibits increases in [Ca2+]i induced by membrane depolarization, NMDA receptor activation, and ischemia in rat hippo campal and cortical slices. Anesthesiology 1998: 89: 456–466.PubMedCrossRefGoogle Scholar
  463. Zhu H, Cottrell JE, Kass IS. The effect of thiopental and propofol on NMDA- and AMPA-mediated glutamate excitotoxicity. Anesthesiology 1997: 87: 944–951PubMedCrossRefGoogle Scholar
  464. Åkesen J, Björkman S, Messeter K, Rosén I. Low-dose midazolam antagonizes cerebral metabolic stimulation by ketamine in the pig.. Acta Anaesthesiol Scand 1993: 37: 521–531.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Georg E. Cold
    • 1
  • Bent L. Dahl
    • 1
  1. 1.Department of NeuroanaesthesiaÅrhus University HospitalÅrhusDenmark

Personalised recommendations