Crustacean Chromatophore: Endocrine Regulation and Intracellular Signalling Systems

  • Luiz E. M. Nery
  • Ana M. L. Castrucci
Conference paper


Crustacean body coloration plays a major role in communication, cryptic and thermoregulatory behavior (Thurman 1990). The pigments ommochromes, melanins, carotenoids, purines, and pterines are synthesized and/or stored within specialized epidermal cells, or epidermal appendices, such as hair or cuticle. The so-called pigment cells or chromatophores possess multiple branching processes, and may also be present in the epidermal lining of internal organs (nerve cord, intestine, and gonads). Chromatophores may be grouped according to their pigment color and internal structure (Rao 1985). Melanophores possess black or brown granules, erythrophores have red color, xanthophores are yellow, leucophores possess white granules, and iridophores are iridescent due to light reflection. Although color pattern is genetically determined, many crustaceans have the ability to change body coloration in response to exogenous or endogenous stimuli. Most species display a slowly changeable color pattern associated with ontogenetic, dietary, or seasonal determinants. These slow and long-lasting changes result from alterations in chromatophore number and/or pigment amount within the cells, and will not be discussed here. The Malocostraca, particularly some species of amphipods, euphausiids, mysids, stomatopods, isopods, and decapods, can also display rapid color changes as an immediate response to environmental changes, such as background color, light intensity, or social context.


Okadaic Acid Pigment Cell Fiddler Crab Pigment Dispersion Pigment Aggregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrão MS, Castrucci AML, Hadley ME, Hruby VJ (1991) Protein-kinase C mediates MCH signal transduction in teleost, Synbranchus marmoratus, melanocytes. Pigment Cell Res 4: 66–70PubMedCrossRefGoogle Scholar
  2. Andrew RD, Saleuddin ASM (1978) Structure and innervation of a crustacean neurosecretory cell. Can J Zool 56: 423–430CrossRefGoogle Scholar
  3. Aréchiga H (1977) Modulation of visual input in the crayfish. In: Hoyle G (ed) Identified neurons and behavior of arthropods. Plenum Press, New York, pp 387–403CrossRefGoogle Scholar
  4. Bialojan C, Takai A (1988) Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases: specificity and kinetics. Biochem J 256: 283–290PubMedGoogle Scholar
  5. Binkley S (1988) The pineal: endocrine and nonendocrine functions. Prentice Hall, Englewood Cliffs, New Jersey, 304 ppGoogle Scholar
  6. Bittman EL (1993) The sites and consequences of melatonin binding in mammals. Am Zool 33: 200–211Google Scholar
  7. Britto ALM, Castrucci AML, Visconti MA, Josefsson L (1990) Quantitative in vitro assay for crustacean chromatophorotropins and other pigment cell agonists. Pigment Cell Res 3: 28–32PubMedCrossRefGoogle Scholar
  8. Britto ALM, Josefsson L, Scemes E, Visconti MA, Castrucci AML (1996) Ionic requirements for PCH-induced pigment aggregation in the freshwater shrimp, Macrobrachium_potiuna, erythrophore. Comp Biochem Physiol 113A: 351–359CrossRefGoogle Scholar
  9. Brown FA Jr, Edeströn HE (1940) Dual control of certain black chromatophores of Crangon. J Exp Zool 85: 53–69CrossRefGoogle Scholar
  10. Brown FA Jr, Klotz IM (1947) Separation of two mutually antagonistic chromatophorotropins from the tritocerebral commissure of Crangon. Proc Soc Exp Biol 64: 310–333PubMedGoogle Scholar
  11. Brown FA Jr, Saigh LA (1946) The comparative distribution of two chromatophorotropic hormones (CDH and CBLH) in crustacean nervous systems. Biol Bull 91: 170–180PubMedCrossRefGoogle Scholar
  12. Brown FA Jr, Wulff VJ (1941) Chromatophore types in Crangon and their endocrine control. J Cell Comp Physiol 18: 339–353CrossRefGoogle Scholar
  13. Camargo CR, Visconti MA, Castrucci AML (1999) Physiological color change in the bullfrog, Rana catesbeiana. J Exp Zool 283: 160–169PubMedCrossRefGoogle Scholar
  14. Carlson SP (1936) Color change in Uca pugilator. K Fysiogr Sällsk Lund Forh 6: 63–80Google Scholar
  15. Castrucci AML, Mendes EG (1979) Erythrophore studies in two anomuran crustaceans, a fresh water, Aegla castro and an intertidal, Petrolisthes armatus. Bol Fisiol Animal Univ S Paulo 3:49–59Google Scholar
  16. Cohen P, Holmes CFB, Tsukitani Y (1990) Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci 15: 98–102PubMedCrossRefGoogle Scholar
  17. De Kleijn DPV, Van Herp F (1995) Molecular biology of neurohormone precursors in the eyestalk of Crustacea. Comp Biochem Physiol 112B (4): 573–579CrossRefGoogle Scholar
  18. De Kleijn DPV, Linck B, Klein JM, Weidmann WM, Keller R, van Herp F (1993) Structure and localization of mRNA encoding a pigment dispersing hormone (PDH) in the eyestalk of the crayfish Orconectes limosus. FEBS 321: 251–255CrossRefGoogle Scholar
  19. Desmoucelles-Carette C, Sellos D, Van Wormhoudt A (1996) Molecular cloning of the precursors of pigment dispersing hormone in crustaceans. Biochem Biophys Res Comm 221: 739–743PubMedCrossRefGoogle Scholar
  20. Dickinson PS, Marder E (1989) Peptidergic modulation of a multioscillator system in the lobster. I. Activation of the cardiac sac motor pattern by the neuropeptides proctolin and red pigment-concentrating hormone. J Neurophysiol 61: 833–844PubMedGoogle Scholar
  21. Dickinson PS, Mecsas C, Marder E (1990) Neuropeptide fusion of two motor-pattern generator circuits. Nature 344: 155–158PubMedCrossRefGoogle Scholar
  22. Dickinson PS, Mecsas C, Hetling J, Terio K (1993) The neuropeptide red pigment concentrating hormone affects rhythmic pattern generation at multiple sites. J Neurophysiol 69: 1475–1483PubMedGoogle Scholar
  23. Dickinson PS, Fairfield WP, Hetling JR, Hauptman J (1997) Neurotransmitter interactions in the stomatogastric system of the spiny lobster: one peptide alters the response of a central pattern generator to a second peptide. J Neurophysiol 77: 599–610PubMedGoogle Scholar
  24. Dircksen H, Zahnow CA, Gaus G, Keller R, Rao KR, Rhiem JP (1987) The ultrastructure of nerve endings containing pigment dispersing hormone (PDH) in crustacean sinus gland. Identification by an antiserum, against a synthetic PDH. Cell Tissue Res 250: 377–387CrossRefGoogle Scholar
  25. Ewer J, Truman JW (1996) Increases in cyclic 3′,5′-guanosine monophosphate (cGMP) occur at ecdysis in an evolutionary conserved crustacean cardioactive peptide-immunoreactive insect neuronal network. J Comp Neurol 370: 330–341PubMedCrossRefGoogle Scholar
  26. Fernlund P (1971) Chromoactivating hormone of Pandalus borealis: isolation and purification of a light-adapting hormone. Biochem Biophys Acta 237: 519–529PubMedCrossRefGoogle Scholar
  27. Fernlund P (1976) Structure of a light adapting hormone from the shrimp Pandalus borealis. Biochem Biophys Acta 439: 17–25PubMedCrossRefGoogle Scholar
  28. Fernlund P, Josefsson L (1968a) Chromoactivating hormones of Pandalus borealis. Isolation and purification of the red pigment-concentrating hormone. Biochem Biophys Acta 158: 262–273PubMedCrossRefGoogle Scholar
  29. Fernlund P, Josefsson L (1968b) Chromoactivating hormones of Pandalus borealis. On the bioassay of the distal retinal pigment hormone. Mar Biol 2: 19–22CrossRefGoogle Scholar
  30. Fernlund P, Josefsson L (1972) Crustacean color-change hormone: amino acid sequence and chemical synthesis. Science 177: 173–175PubMedCrossRefGoogle Scholar
  31. Filadelfi AMC, Castrucci AML (1994) Melatonin desensitizing effects on the in vitro responses to MCH, alpha-MSH, isoproterenol and melatonin in pigment cells of a fish (S. marmoratus), a toad (B. ictericus), a frog (R. pipiens), and a lizard (A. carolinensis), exposed to varying photoperiodic regimens. Comp Biochem Physiol 109 A (4): 1027–1037CrossRefGoogle Scholar
  32. Filadelfi AMC, Castrucci AML (1996) Comparative aspects of the pineal/melatonin system of Poikilothermic vertebrates. J Pineal Res 20: 175–186PubMedCrossRefGoogle Scholar
  33. Fingerman M (1969) Cellular aspects of the control of physiological color change in crustaceans. Am Zool 9: 443–452PubMedGoogle Scholar
  34. Fingerman M (1997) Crustacean endocrinology: a retrospective, prospective, and introspective analysis. Physiol Zool 70(3): 257–269PubMedGoogle Scholar
  35. Fingerman M, Fingerman SW (1977) Antagonistic actions of dopamine and 5-hydroxytryptamine on color changes in the fiddler crab Uca pugilator. Comp Biochem Physiol 58C: 121–127Google Scholar
  36. Fingerman M, Rao KR, Bartell CK (1967) A proposed uniform method of reporting response values for crustacean chromaphorotropins: the standard integrated response. Experientia 23:962PubMedCrossRefGoogle Scholar
  37. Fingerman M, Hanumante M, Fingerman SW (1981) The effects of biogenic amines on color changes in the fiddler crab Uca pugilator. Further evidence for roles of 5-hydroxytryptamine and dopamine as neurotransmitters triggering release of phototropic hormones. Comp Biochem Physiol 68C: 205–211Google Scholar
  38. Frixione E, Aréchiga H, Tsutsumi V (1979) Photomechanical migrations of pigment granules along the retinula cells of the crayfish. J Neurobiol 10: 573–590PubMedCrossRefGoogle Scholar
  39. Fruman DA, Claude BK, Barbara EB, Burakoff SJ (1992) Calcineurin phosphatase activity in T lymphocytes is inhibited by FK506 and cyclosporin A. Proc Natl Acad Sci USA 89: 3686–3690PubMedCrossRefGoogle Scholar
  40. Fujii R, Oshima N (1994) Factors influencing motile activities of fish chromathophores. In: Arpigny JL (ed) Advances in comparative and environmental physiology, vol 20. Springer, Berlin Heidelberg New York, pp 1–54CrossRefGoogle Scholar
  41. Fujii R, Wakatabi H, Oshima N (1991) Inositol 1,4,5-triphosphate signals the motile response of fish chromatophores. I. Aggregation of pigment in the Tilapia melanophore. J Exp Zool 259: 9–17CrossRefGoogle Scholar
  42. Fujii R, Tanaka Y, Hayashi H (1993) Endothelin-1 causes aggregation of pigment in teleostean melanophores. Zool Sci 10: 763–772Google Scholar
  43. Gäde G (1990) The adipokinetic hormone / red pigment concentrating hormone peptide family: structure, interrelationship and functions. J Insect Physiol 36: 1–12CrossRefGoogle Scholar
  44. Garfias A, Rodriguez-sosa L, Aréchiga H (1995) Modulation of crayfish retinal function by red pigment concentrating hormone. J Exp Biol 198: 1447–1454PubMedGoogle Scholar
  45. Gaus G, Stieve H (1992) The effect of neuropeptides on the ERG of the crayfish Orconectes limosus. Z Naturforsch (C) 47: 300–303Google Scholar
  46. Gaus G, Kleinholz LH, Kegel G, Keller R (1990) Isolation and characterization on red-pigment-concentrating hormone (RPCH) from six crustacean species. J Comp Physiol B 160: 373–379CrossRefGoogle Scholar
  47. Hadley ME (1987) Calcium-dependent irreversible effect of ionophore A23187 on melanophores. Pigment Cell Res 1: 57–61PubMedCrossRefGoogle Scholar
  48. Hallahan C, Orsi BA (1972) Effects of adenosine 3,5-monophosphate on melanin dispersion in the shore crab Carcinus maenas (L.). Gen Comp Endocrinol 18: 428–434PubMedCrossRefGoogle Scholar
  49. Herman WS, Dalimann SH (1975) Limulus chromatophorotropin: action on isolated Uca legs and in various crustaceans. Experientia 31: 918–919PubMedCrossRefGoogle Scholar
  50. Herreid II CF, Mooney SM (1984) Color change in exercising crabs: evidence for a hormone. J Comp Physiol 154B: 207–212Google Scholar
  51. Hisano S (1978) Synaptic junctions in the sinus gland of freshwater prawn Palaemon paucidens. Cell Tissue Res 189: 435–440PubMedCrossRefGoogle Scholar
  52. Jorenby WH, Riehm JP, Rao KR (1987) Position 3 analogues of a crustacean pigment-dispersing hormone: synthesis and biological activity. Biochem Biophys Res Comm 143: 652–657PubMedCrossRefGoogle Scholar
  53. Klein JM, Rao KR (1996) Molecular biology of pigment influencing peptides in arthropods: progress and perspectives. Pigment Cell Res Suppl 5: 66Google Scholar
  54. Klein JM, Mohrherr CJ, Sleutels F, Riehm JP, Rao KR (1994) Molecular cloning of two pigment-dispersing hormone (PDH) precursors in the blue crab Callinectes sapidus reveals a novel member of the PDH neuropeptide family. Biochem Biophys Res Commun 205 (1): 410–416PubMedCrossRefGoogle Scholar
  55. Klein JM, Mohrherr CJ, Sleutels F, Jaenecke N, Riehm JP, Rao KR (1995) A highly conserved red pigment-concentrating hormone precursor in the blue crab Callinectes sapidus. Biochem Biophys Res Commun 212: 151–158PubMedCrossRefGoogle Scholar
  56. Kleinholz LH, Rao KR, Riehm JP, Tarr GE, Johnson L, Norton S (1986) Isolation and sequence analysis of a pigment-dispersing hormone from the eyestalks of the crab Cancer magister. Biol Bull 170: 135–143.CrossRefGoogle Scholar
  57. Koller G (1925) Über den Farbwechsel bei Crangon vulgaris. Verh Zool Ges Wien 30:128–132.Google Scholar
  58. Koller G (1927) Über Chromatophoren-System, Farbenseinn und Farbwechsel bei Crangon vulgaris, Z Vgl Physiol 5: 191–246Google Scholar
  59. Lambert DT, Crowe JH (1976) Colchicine, cytochalasin-b, cyclic AMP, and pigment granule translocation in melanophores of Uca pugilator and Hemigrapsus oregonensis (Crustacea, Decapoda). Comp Biochem Physiol 54C: 115–122Google Scholar
  60. Lambert DT, Fingerman M (1978) Colchicine and cytochalasin B: a further characterization of their actions on crustacean chromatophores using the ionophore A23187 and thiol reagents. Biol Bull 155: 563–575CrossRefGoogle Scholar
  61. Linck B, Klein JM, Mangerich S, Keller R, Weidemann WM (1993) Molecular cloning of crustacean red pigment concentrating hormone precursor. Biochem Biophys Res Commun 195:807–813PubMedCrossRefGoogle Scholar
  62. Löhr J, Klein J, Webster SG, Dircksen H (1993) Quantification, immunoaffinity purification and sequence analysis of a pigment dispersing hormone of the shore crab, Carcinus_maenas (L.). Comp Biochem Physiol 104B (4): 699–706Google Scholar
  63. Mangerich S, Keller R (1988) Localization of pigment dispersing hormone in the central nervous system of Carciuus maenas and Orconectes limosus (Crustacea) with reference to FMRFamide immunoreactivity in O. limosus. Cell Tissue Res 253: 199–208PubMedCrossRefGoogle Scholar
  64. Mangerich S, Keller R, Dircksen H (1986) Immunocytochemical identification of structures containing putative red pigment concentrating hormone in two species of decapod crustaceans. Cell Tissue Res 245: 377–386CrossRefGoogle Scholar
  65. Mangerich S, Keller R, Dircksen H, Rao KR, Riehm JP (1987) Immunocytochemical localization of pigment dispersing hormone (PDH) and its coexistence with FMRFamide immunoreactive material in the eyestalk of decapod crustaceans Carduus maenas and Orconectes limosus. Cell Tissue Res 250: 365–375CrossRefGoogle Scholar
  66. Märtensson LGE, Andersson RGG (1996) A melatonin-binding site modulates the α2-adrenoceptor. Life Sci 58: 525–533PubMedCrossRefGoogle Scholar
  67. McCallum ML, Rao KR, Riehm JP, Mohrerr CJ, Morgan WT (1988) Isolation of a β-PDH analog from the crayfish Procambarus clarkii. Am Zool 28: 117AGoogle Scholar
  68. McCallum ML, Rao KR, Riehm JP, Mohrerr CJ, Morgan WT (1991) Primary structure and relative potency of an analog of β-PDH (pigment-dispersing hormone) from the crayfish Procambarus clarkii. Pigment Cell Res 4: 201–208PubMedCrossRefGoogle Scholar
  69. McClintock TS, Rising JP, Lerner MR (1996) Melanophore pigment dispersing responses to agonists show two patterns of sensitivity to inhibitors of cAMP-dependent protein kinase and protein kinase C. J Cell Physiol 167: 1–7PubMedCrossRefGoogle Scholar
  70. McNamara JC, Ribeiro M (1999) Kinetic characterization of pigment migration and the role of the cytoskeleton in granule translocation in the red chromatophores of the shrimp Macrobrachium olfersii (Crustacea, Decapoda). J Exp Zool 283(1): 19–30CrossRefGoogle Scholar
  71. McNamara JC, Taylor HH (1987) Ultrastructural modifications associated with pigment migration in palaemonid shrimp chromatophores (Decapoda, Palaemonidae). Crustaceana 53: 113–133CrossRefGoogle Scholar
  72. Mohrherr CJ, Rao KR, Riehm JP (1991) Characterization of a pigment-dispersing factor from the American cockroach. Soc Neurosci Abstr 17: 276Google Scholar
  73. Mulloney B, Namba H, Agricola H-J, Hall WM (1997) Modulation of force during locomotion: differential action of crustacean cardioactive peptide on power-stroke and return-stroke motor neurons. J Neurosci 17(18): 6872–6883PubMedGoogle Scholar
  74. Nery LEM, Castrucci AML (1997) Pigment cell signalling for physiological color change: a review. Comp Biochem Physiol 118A (4): 1135–1144CrossRefGoogle Scholar
  75. Nery LEM, Silva MA, Josefsson L, Castrucci AML (1997) Cellular signalling of PCH-induced pigment aggregation in the crustacean Macrobrachium potiuna erythrophores. J Comp Physiol B, 167:570–575PubMedCrossRefGoogle Scholar
  76. Nery LEM, Silva MA, Castrucci AML (1998) Role of cyclic nucleotides in pigment translocation within the freshwater shrimp, Macrobrachium potiuna, erythrophores. J Comp Physiol B 168: 624–630CrossRefGoogle Scholar
  77. Nery LEM, Silva MA, Castrucci AML (1999) Possible role of non-classical chromatophorotropins on the regulation of crustacean erythrophore. J Exp Zool in pressGoogle Scholar
  78. Nusbaum MP, Marder E (1988) A neuronal role for crustacean red pigment concentrating hormone-like peptide: neuromodulation of the pyloric rhythm in the crab, Cancer borealis. J Exp Biol 135: 165–181Google Scholar
  79. Olivo R, Larssen ME (1978) Brief exposure to light initiates screening pigment migration in the retinula cells of the crayfish Procambarus. J Comp Physiol 125 A: 91–96CrossRefGoogle Scholar
  80. Park JH, Hall JC (1998) Isolation and chronobiological analysis of a neuropeptide pigment-dispersing factor gene in Drosophila melanogaster. J Biol Rhythms 13: 219–228PubMedCrossRefGoogle Scholar
  81. Parker GH (1948) Animal colour changes and their neurohumors. Cambridge University Press, LondonGoogle Scholar
  82. Perkins EB (1928) Color changes in crustacean, especially in Palaemonetes. J Exp Zool 50: 71–105CrossRefGoogle Scholar
  83. Phillips JM, Rao KR, Riehm JP, Morgan WT (1988) Isolation and characterization of a pigment dispersing hormone from the shrimp Penaeus aztecus. Soc Neurosci Abstr 14: 534Google Scholar
  84. Powell BL (1962) Chromatophorotropins in the central nervous system of Carcinus maenas_(L.). Crustaceana 4: 143–150CrossRefGoogle Scholar
  85. Prestwich GD, Bruce MJ, Chang ES (1991) Binding proteins for a peptide hormone in the shrimp, Scyonia ingentis: evidence from photoaffinity labeling with red pigment concentrating hormone analogs. Gen Comp Endocrinol 83: 463–480CrossRefGoogle Scholar
  86. Quackenbush LS (1981) Studies on the mechanism of action of a pigment dispersing chromatophorotropin in the fiddler crab, Uca pugilator. Comp Biochem Physiol 68A: 579–604CrossRefGoogle Scholar
  87. Quackenbush LS, Fingerman M (1984a) Regulation of the release of chromatophorotropic neurohormones from the isolated eyestalk of the fiddler crab, Uca pugilator. Biol Bull 166: 237–250CrossRefGoogle Scholar
  88. Quackenbush LS, Fingerman M (1984b) Regulation of neurohormone release in the fiddler crab, Uca pugilator. effects of gamma-aminobutyric acid, octopamine, metenkephalin , and β-endorfin. Comp Biochem Physiol 79C: 77–84CrossRefGoogle Scholar
  89. Rao KR (1985) Pigment effectors. In: Bliss DE, Mantel LH (eds) The biology of Crustacea, vol 9. Academic Press, New York, pp 395–461Google Scholar
  90. Rao KR, Fingerman M (1970) Action of biogenic amines on crustacean chromatophores. II Analysis of the responses of erythrophores in the fiddler crab, Uca pugilator, to indolealkylamines and an eyestalk hormone. Comp Gen Pharmacol 1: 117–126PubMedCrossRefGoogle Scholar
  91. Rao KR, Hackett RB (1973) Studies on the physiological specificity of a synthetic crustacean chromatophorotropin. Am Zool 13: 1276Google Scholar
  92. Rao KR, Riehm JP (1988) Pigment dispersing hormones. In: Bagnara JT (ed) Advances in pigment cell research. Alan R Liss, New York, pp 407–422Google Scholar
  93. Rao KR, Riehm JP (1989) The pigment-dispersing hormone family: chemistry, structure-activity relations, and distribution. Biol Bull 177: 225–229CrossRefGoogle Scholar
  94. Rao KR, Riehm JP (1993) Chemistry of crustacean chromatophorotropin. In: Vaudry H, Eberle AN (eds) The melanotropic peptides. New York Academy Sciences, New York, pp 78–88Google Scholar
  95. Rao KR, Riehm JP, Zahnow CA, Kleinholz LH, Tarr GE, Johnson L, Norton S, Landau M, Semmes DJ, Sattelberg RM, Jorenby WH, Hintz MF (1985) Characterization of a pigment dispersing hormone in the eyestalk of the fiddler crab Uca pugilator. Proc Natl Acad Sci USA 82: 5319–5322PubMedCrossRefGoogle Scholar
  96. Rao KR, Mohrherr CJ, Riehm JP, Zahnow CA, Norton S, Johnson L, Tarr GE (1987) Primary structure of an analog of crustacean pigment-dispersing hormone from the lubber grasshoper Romalea microptera. J Biol Chem 262: 2672–2675PubMedGoogle Scholar
  97. Rao KR, Kleinholz LH, Riehm JP (1989) Characterization of three forms of pigment-dispersing hormone from the shrimp Pandalus jordanii. Soc Neurosci Abstr 15: 367Google Scholar
  98. Richards K, Kilman V, Golowasch J, Marder E (1996) Modulation of the stomatogastric ganglion of the lobster, Homarus americanus. Soc Neurosci Abstr 22: 839Google Scholar
  99. Rodionov VI, Hope AJ, Svitkina TM, Borisy GG (1998) Functional coordination of microtubule-based and actin-based motility in melanophores. Curr Biol 8(3): 165–168PubMedCrossRefGoogle Scholar
  100. Rodriguez-Sosa L, Calderón J, Becerra E, Aréchiga H (1994) Regional distribution and immunocytological localization of red pigment-concentrating hormone in the crayfish eyestalk. Gen Comp Endocrinol 95: 443–456PubMedCrossRefGoogle Scholar
  101. Rogers SL, Gelfand VI (1998) Myosin cooperates with microtubule motors during organelle transport in melanophores. Curr Biol 8(3): 161–164PubMedCrossRefGoogle Scholar
  102. Rollag MD, Lynch R (1993) Melatonin-induced desensitization in amphibian melanophores. J Exp Zool 265: 488–495PubMedCrossRefGoogle Scholar
  103. Stangier J, Hilbich C, Beyreuther K, Keller R (1987) Unusual cardioactive peptide (CCAP) from pericardial organs of the shore crab Carcinus maenas. Proc Natl Acad Sci USA 84: 575–579PubMedCrossRefGoogle Scholar
  104. Sugden D, Rowe SJ (1992) Protein kinase C antagonizes melatonin-induced pigment aggregation in Xenopus laevis melanophores. J Cell Biol 119(6): 1515–1521PubMedCrossRefGoogle Scholar
  105. Tamarkin L, Baird CJ, Almeida OFX (1985) Melatonin: a coordinating signal for mammalian reproduction? Science 227: 714–720PubMedCrossRefGoogle Scholar
  106. Thurman CL (1990) Adaptative coloration in Texas fiddler crab (Uca). In: Wicksten M (ed) Adaptative coloration in invertebrates: animal behavior. Texas A&M University Press, pp 109–125Google Scholar
  107. Trube A, Audehm U, Dircksen H (1994) Crustacean cardioactive peptide-immunoreactive neurons in the ventral nervous system of crayfish. J Comp Neurol 348(1): 80–93PubMedCrossRefGoogle Scholar
  108. Tuma MCB, Castrucci AML, Josefsson L (1993) Comparative activities of the chromatrophorotropins RPCH, α-PDH, and β-PDH on three crustacean species. Physiol Zool 66(2): 181–192Google Scholar
  109. Tuma MCB, Jossefson L, Castrucci AML (1995) Cytoskeleton and PCH-induced pigment aggregation in Macrobrachium potiuna erythrophores. Pigment Cell Res (8): 215–220Google Scholar
  110. Tuma MCB, Zill A, Bot NL, Vernos I, Gelfand V (1998) Heterotrimeric kinesin II is the microtubular motor protein responsible for pigment dispersion in Xenopus melanophores. J Cell Biol 143(6): 1547–1558PubMedCrossRefGoogle Scholar
  111. Underwood H (1981) Circadian organization in the lizard Sceloporus occidentalis: the effects of pinealectomy, blinding and melatonin. J Comp Physiol 141: 537–547Google Scholar
  112. Vivien-Roels B, Pévet P (1993) Melatonin: presence and formation in invertebrates. Experientia 49: 642–647CrossRefGoogle Scholar
  113. Wang SM, Chen JS, Fong TH, Hsu SY, Lim SS (1997) Characterization of novel filament system in goldfish xanthophores. Cell Motil Cytoskeleton 36(3): 216–227PubMedCrossRefGoogle Scholar
  114. Yang WJ, Aida K, Nagasawa H (1999) Characterization of chromatophorotropic neuropeptides from the kuruma prawn Penaeus japonicus. Gen Comp Endocrinol 114: 415–424PubMedCrossRefGoogle Scholar
  115. Yasin SA, Costa A, Besser GM, Hucks D, Grossman A, Forsling ML (1993a) Melatonin and its analogs inhibit the basal and stimulated release of hypothalamic vasopressin and oxytocin in vitro. Endocrinology 132: 1329–1336PubMedCrossRefGoogle Scholar
  116. Yasin SA, Grossman A, Forsling ML (1993b) Effects of melatonin, administered at various times of the day, on the release of neurohypophysial hormones from the rat hypothalamus in vitro. J Physiol 473: 111Google Scholar
  117. Yasin SA, Windle R, Grossman A, Forsling ML (1993c) Mechanisms of melatonin inhibition of vasopressin release from the rat hypothalamus in vitro. J Physiol 467: 349Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Luiz E. M. Nery
    • 1
  • Ana M. L. Castrucci
    • 2
  1. 1.Dept. Ciências Fisiológicas, Lab. ZoofisiologiaFundação Universidade Federal do Rio Grande (FURG)Rio Grande - RSBrazil
  2. 2.Instituto de Biociências, Dept. de Fisiologia, Lab. Fisiologia Comparativa da PigmentaçãoUniversidade de São Paulo (USP)São Paulo - SPBrazil

Personalised recommendations