Convergence and Divergence of Cotransmitter Systems in the Crab Stomatogastric Nervous System

  • Eve Marder
  • Andrew M. Swensen
  • Dawn M. Blitz
  • Andrew E. Christie
  • Michael P. Nusbaum
Conference paper

Abstract

Many neurons contain multiple cotransmitters, including neuropeptides. In the stomatogastric nervous system a number of different neuropeptides are found colocalized with small molecule neurotransmitters. Three proctolin-containing projection neurons contain different cotransmitters, and modulate the stomatogastric ganglion motor patterns differently. A number of neuropeptides, including proctolin, found in inputs to the stomatogastric ganglion, converge onto the same membrane current. This includes colocalized peptides. Studying the peptidergic modulation of the stomatogastric ganglion provides a unique opportunity to uncover general principles of organization of peptidergic control systems.

Keywords

Dopamine Serotonin Histamine Neurol Acetylcholine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bal T, Nagy F, Moulins M (1994) Muscarinic modulation of a pattern-generating network: control of neuronal properties. J Neurosci 14: 3019–3035PubMedGoogle Scholar
  2. Beltz B, Eisen JS, Flamm R, Harris-Warrick RM, Hooper S, Marder E (1984) Serotonergic innervation and modulation of the stomatogastric ganglion of three decapod crustaceans (Panulirus interruptus, Homarus americanus and Cancer irroratus). J Exp Biol 109: 35–54PubMedGoogle Scholar
  3. Blitz DM, Nusbaum MP (1996) Sensory neuron activation of modulatory projection neurons. Soc Neurosci Abst 22: 1375Google Scholar
  4. Blitz DM, Nusbaum MP (1999) Distinct functions for cotransmitters mediating motor pattern selection. J Neurosc 19: 6774–6783Google Scholar
  5. Blitz DM, Christie AE, Marder E, Nusbaum MP (1995) Distribution and effects of tachykinin-like peptides in the stomatogastric nervous system of the crab, Cancer borealis. J Comp Neurol 354: 282–294PubMedCrossRefGoogle Scholar
  6. Blitz DM, Beenhakker MP, Nusbaum MP (1998) Motor pattern selection via projection neuron selection. Soc Neurosci Abstr 24: 1890Google Scholar
  7. Blitz DM, Christie AE, Coleman MJ, Norris BJ, Marder E, Nusbaum MP (1999) Different proctolin neurons elicit distinct motor patterns from a multifunctional neuronal network. J Neurosci 19: 5449–5463PubMedGoogle Scholar
  8. Cazalets JR, Cournil I, Geffard M, Moulins M (1987) Suppression of oscillatory activity in crustacean pyloric neurons: implication of GABAergic inputs. J Neurosci 7: 2884–2893PubMedGoogle Scholar
  9. Christie AE, Nusbaum MP (1995) Distribution and effects of corazonin-like and allatotropin-like peptides in the crab stomatogastric nervous system. Soc Neurosci Abst 21: 629Google Scholar
  10. Christie AE, Hall C, Oshinsky M, Marder E (1994) Buccalin-like and myomodulin-like peptides in the stomatogastric ganglion of the crab Cancer borealis. J Exp Biol 193: 337–343PubMedGoogle Scholar
  11. Christie AE, Baldwin D, Turrigiano G, Graubard K, Marder E (1995) Immunocytochemical localization of multiple cholecystokinin-like peptides in the stomatogastric nervous system of the crab, Cancer borealis. J Exp Biol 198: 263–271PubMedGoogle Scholar
  12. Christie AE, Lundquist T, Nässel DR, Nusbaum MP (1997) Two novel tachykinin-related peptides from the nervous system of the crab Cancer borealis. J Exp Biol 200: 2279–2294PubMedGoogle Scholar
  13. Claiborne B, Selverston A (1984) Histamine as a neurotransmitter in the stomatogastric nervous system of the spiny lobster. J Neurosci 4: 708–721PubMedGoogle Scholar
  14. Coleman MJ, Nusbaum MP (1994) Functional consequences of compartmentalization of synaptic input. J Neurosci 14: 6544–6552PubMedGoogle Scholar
  15. Coleman MJ, Nusbaum MP, Cournil I, Claiborne BJ (1992) Distribution of modulatory inputs to the stomatogastric ganglion of the crab, Cancer borealis. J Comp Neurol 325: 581–594PubMedCrossRefGoogle Scholar
  16. Coleman MJ, Meyrand P, Nusbaum MP (1995) A switch between two modes of synaptic transmission mediated by presynaptic inhibition. Nature 378: 502–505PubMedCrossRefGoogle Scholar
  17. Dickinson P, Mecsas C, Hetling J, Terio K (1993) The neuropeptide red pigment concentrating hormone affects rhythmic pattern generation at multiple sites. J Neurophysiol 69: 1475–1483PubMedGoogle Scholar
  18. Dickinson PS, Marder E (1989) Peptidergic modulation of a multioscillator system in the lobster. I. Activation of the cardiac sac motor pattern by the neuropeptides proctolin and red pigment concentrating hormone. J Neurophysiol 61: 833–844PubMedGoogle Scholar
  19. Dickinson PS, Mecsas C, Marder E (1990) Neuropeptide fusion of two motor pattern generator circuits. Nature 344: 155–158PubMedCrossRefGoogle Scholar
  20. Elson RC, Selverston AI (1992) Mechanisms of gastric rhythm generation in isolated stomatogastric ganglion of spiny lobsters: bursting pacemaker potentials, synaptic interactions and muscarinic modulation. J Neurophysiol 68: 890–907PubMedGoogle Scholar
  21. Flamm RE, Harris-Warrick RM (1986a) Aminergic modulation in lobster stomatogastric ganglion. I. Effects on motor pattern and activity of neurons within the pyloric circuit. J Neurophysiol 55: 847–865PubMedGoogle Scholar
  22. Flamm RE, Harris-Warrick RM (1986b) Aminergic modulation in the stomatogastric ganglion. II. Target neurons of dopamine, octopamine, and serotonin within the pyloric circuit. J Neurophysiol 55: 866–881PubMedGoogle Scholar
  23. Golowasch J, Marder E (1992) Proctolin activates an inward current whose voltage dependence is modified by extracellular Ca2+. J Neurosci 12: 810–817PubMedGoogle Scholar
  24. Harris-Warrick RM, Flamm RE (1987) Multiple mechanisms of bursting in a conditional bursting neuron. J Neurosci 7: 2113–2128PubMedGoogle Scholar
  25. Harris-Warrick RM, Marder E (1991) Modulation of neural networks for behavior. Annu Rev Neurosci 14: 39–57PubMedCrossRefGoogle Scholar
  26. Harris-Warrick RM, Coniglio LM, Barazangi N, Guckenheimer J, Gueron S (1995a) Dopamine modulation of transient potassium current evokes phase shifts in a central pattern generator network. J Neurosci 15: 342–358PubMedGoogle Scholar
  27. Harris-Warrick RM, Coniglio LM, Levini RM, Gueron S, Guckenheimer J (1995b) Dopamine modulation of two subthreshold currents produces phase shifts in activity of an identified motoneuron. J Neurophysiol 74: 1404–1420PubMedGoogle Scholar
  28. Harris-Warrick RM, Johnson BR, Peck JH, Kloppenburg P, Ayali A, Skarbinski J (1998) . Distributed effects of dopamine modulation in the crustacean pyloric network. Ann NY Acad Sci 860: 155–167PubMedCrossRefGoogle Scholar
  29. Heinzel HG (1988) Gastric mill activity in the lobster. II. Proctolin and octopamine initiate and modulate chewing. J Neurophysiol 59: 551–565PubMedGoogle Scholar
  30. Heinzel HG, Seiverston AI (1988) Gastric mill activity in the lobster. III. Effects of proctolin on the isolated central pattern generator. J Neurophysiol 59: 566–585PubMedGoogle Scholar
  31. Hooper SL, Marder E (1984) Modulation of a central pattern generator by two neuropeptides, proctolin and FMRFamide. Brain Res 305: 186–191PubMedCrossRefGoogle Scholar
  32. Hooper SL, Marder E (1987) Modulation of the lobster pyloric rhythm by the peptide proctolin. J Neurosci 7: 2097–2112PubMedGoogle Scholar
  33. Jan LY, Jan YN (1982) Peptidergic transmission in sympathetic ganglia of the frog. J Physiol (Lond) 327: 219–246Google Scholar
  34. Johnson BR, Harris-Warrick RM (1990) Aminergic modulation of graded synaptic transmission in the lobster stomatogastric ganglion. J Neurosci 10: 2066–2076PubMedGoogle Scholar
  35. Johnson BR, Peck JH, Harris-Warrick RM (1993a) Amine modulation of electrical coupling in the pyloric network of the lobster stomatogastric ganglion. J Comp Physiol A 172: 715–732PubMedCrossRefGoogle Scholar
  36. Johnson BR, Peck JH, Harris-Warrick RM (1993b) Dopamine induces sign reversal at mixed chemical-electrical synapses. Brain Res 625: 159–164PubMedCrossRefGoogle Scholar
  37. Johnson BR, Peck JH, Harris-Warrick RM (1995) Distributed amine modulation of graded chemical transmission in the pyloric network of the lobster stomatogastric ganglion. J Neurophysiol 174: 437–452Google Scholar
  38. Jorge-Rivera JC, Marder E (1996) TNRNFLRFamide and SDRNFLRFamide modulate muscles of the stomatogastric system of the crab Cancer borealis. J Comp Physiol A 179: 741–751PubMedCrossRefGoogle Scholar
  39. Jorge-Rivera JC, Marder E (1997) Allatostatin decreases stomatogastric neuromuscular transmission in the crab, Cancer borealis. J Exp Biol 200: 2937–2946PubMedGoogle Scholar
  40. Jorge-Rivera JC, Sen K, Birmingham JT, Abbott LF, Marder E (1998) Temporal dynamics of convergent modulation at a crustacean neuromuscular junction. J Neurophysiol 80: 2559–2570PubMedGoogle Scholar
  41. Katz PS, Harris-Warrick RM (1989) Serotonergic/cholinergic muscle receptor cells in the crab stomatogastric nervous system. II. Rapid nicotinic and prolonged modulatory effects on neurons in the stomatogastric ganglion. J Neurophysiol 62: 571–581PubMedGoogle Scholar
  42. Katz PS, Eigg MH, Harris-Warrick RM (1989) Serotonergic/cholinergic muscle receptor cells in the crab stomatogastric nervous system. I. Identification and characterization of the gastropyloric receptor cells. J Neurophysiol 62: 558–570PubMedGoogle Scholar
  43. Kiehn O, Harris-Warrick RM (1992a) Serotonergic stretch receptors induce plateau properties in a crustacean motor neuron by a dual-conductance mechanism. J Neurophysiol 68: 485–495PubMedGoogle Scholar
  44. Kiehn O, Harris-Warrick RM (1992b) 5-HT modulation of hyperpolarization-activated inward current and calcium-dependent outward current in a crustacean motor neuron. J Neurophysiol 68: 496–508Google Scholar
  45. Kilman VL, Marder E (1996) Ultrastructure of the stomatogastric ganglion neuropil of the crab, Cancer borealis. J Comp Neurol 374: 362–375PubMedCrossRefGoogle Scholar
  46. Kloppenburg P, Levini RM, Harris-Warrick RM (1999) Dopamine modulates two potassium currents and inhibits the intrinsic firing properties of an identified motor neuron in a central pattern generator network. J Neurophysiol 81: 29–38PubMedGoogle Scholar
  47. Kupfermann I (1991) Functional studies of cotransmission. Physiol Rev 71: 683–732PubMedGoogle Scholar
  48. Marder E (1987) Neurotransmitters and Neuromodulators. In: Selverston AI, Moulins M, (eds) The crustacean stomatogastric nervous system: a model for the study of central nervous systems. Springer, Berlin, Heidelberg, New York, pp 263–300CrossRefGoogle Scholar
  49. Marder E (1999) Neural signalling: Does colocalization imply cotransmission? Curr Biol 9:R809–R811PubMedCrossRefGoogle Scholar
  50. Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76: 687–717PubMedGoogle Scholar
  51. Marder E, Eisen JS (1984a) Electrically coupled pacemaker neurons respond differently to the same physiological inputs and neurotransmitters. J Neurophysiol 51: 1362–1374PubMedGoogle Scholar
  52. Marder E, Eisen JS (1984b) Transmitter identification of pyloric neurons: electrically coupled neurons use different neurotransmitters. J Neurophysiol 51: 1345–1361PubMedGoogle Scholar
  53. Marder E, Hooper SL (1985) Neurotransmitter modulation of the stomatogastric ganglion of decapod crustaceans. In:. Selverston AI, (ed) Model neural networks and behavior. Plenum Press, New York, 319–337Google Scholar
  54. Marder E, Paupardin-Tritsch D (1978) The pharmacological properties of some crustacean neuronal acetylcholine, gamma-aminobutyric acid and 1-glutamate responses. J Physiol 280: 213–236PubMedGoogle Scholar
  55. Marder E, Weimann JM (1992) Modulatory control of multiple task processing in the stomatogastric nervous system. In: Kien J, McCrohan C, Winlow B, (eds) Neurobiology of motor progamme selection. Pergamon Press, New York, pp 3–19Google Scholar
  56. Marder E, Hooper SL, Siwicki KK (1986) Modulatory action and distribution of the neuropeptide proctolin in the crustacean stomatogastric nervous system. J Comp Neurol 243: 454–467PubMedCrossRefGoogle Scholar
  57. Marder E, Calabrese RL, Nusbaum MP, Trimmer B (1987) Distribution and partial characterization of FMRFamide-like peptides in the stomatogastric nervous systems of the rock crab, Cancer borealis, and the spiny lobster, Panulirus interruptus. J Comp Neurol 259: 150–163PubMedCrossRefGoogle Scholar
  58. Marder E, Christie AE, Kilman VL (1995) Functional organization of cotransmission systems: lessons from small nervous systems. Invert Neurosci 1: 105–112PubMedCrossRefGoogle Scholar
  59. Mortin LI, Marder E (1991) Differential distribution of β-pigment dispersing hormone (β-PDH)-like immunoreactivity in the stomatogastric nervous system of five species of decapod crustaceans. Cell Tissue Res 265: 19–33PubMedCrossRefGoogle Scholar
  60. Nagy F, Dickinson PS (1983) Control of a central pattern generator by an identified modulatory interneurone in crustacea. I. Modulation of the pyloric motor output. J Exp Biol 105: 33–58PubMedGoogle Scholar
  61. Nusbaum MP, Marder E (1988) A neuronal role for a crustacean red pigment concentrating hormone-like peptide: neuromodulation of the pyloric rhythm in the crab, Cancer borealis. J Exp Biol 135: 165–181Google Scholar
  62. Nusbaum MP, Marder E (1989a) A modulatory proctolin-containing neuron (MPN). I. Identification and characterization. J Neurosci 9: 1591–1599PubMedGoogle Scholar
  63. Nusbaum MP, Marder E (1989b) A modulatory proctolin-containing neuron (MPN). II. State-dependent modulation of rhythmic motor activity. J Neurosci 9: 1600–1607PubMedGoogle Scholar
  64. Nusbaum MP, Wood DE (1999) The role of cotransmitters and peptidase activity in shaping the actions of peptidergic neurons. Soc Neurosci Abstr 25: 1967Google Scholar
  65. Nusbaum MP, Weimann JM, Golowasch J, Marder E (1992) Presynaptic control of modulatory fibers by their neural network targets. J Neurosci 12: 2706–2714PubMedGoogle Scholar
  66. Richards KS, Marder E (2000) The actions of crustacean cardioactive peptide on adult and developing stomatogastric ganglion motor patterns. J Neurobiol 44: 31–44PubMedCrossRefGoogle Scholar
  67. Scholz NL, Goy MF, Truman JW, Graubard K (1996) Nitric oxide and peptide neurohormones activate cGMP synthesis in the crab stomatogastric nervous system. J Neurosci 16: 1614–1622PubMedGoogle Scholar
  68. Scholz NL, Chang ES, Graubard K, Truman JW (1998) The NO/cGMP pathway and the development of neural networks in postembryonic lobsters. J Neurobiol 34: 208–226PubMedCrossRefGoogle Scholar
  69. Sharp AA (1994) Single neuron and small network dynamics explored with the dynamic clamp. In: Biophysics program. Brandeis University, Waltham, 199 ppGoogle Scholar
  70. Sharp AA, O’Neil MB, Abbott LF, Marder E (1993) The dynamic clamp: artificial conductances in biological neurons. Trends Neurosci 16: 389–394PubMedCrossRefGoogle Scholar
  71. Skiebe P (1999) Allatostatin-like immunoreactivity within the stomatogastric nervous system and the pericardial organs of the crab Cancer pagurus, the lobster Homarus americanus, and the crayfish Cherax destructor and Procambarus clarkii. J Comp Neurol 403: 85–105PubMedCrossRefGoogle Scholar
  72. Skiebe P, Schneider H (1994) Allatostatin peptides in the crab stomatogastric nervous system: inhibition of the pyloric motor pattern and distribution of allatostatin-like immunoreactivity. J Exp Biol 194: 195–208PubMedGoogle Scholar
  73. Skiebe P, Dietel C, Schmidt M (1999) Immunocytochemical localization of FLRFamide-, proctolin-, and CCAP- like peptides in the stomatogastric nervous system and neurohemal structures of the crayfish, Cherax destructor. J Comp Neurol 414: 511–532PubMedCrossRefGoogle Scholar
  74. Swensen A, Marder E (1997) Multiple modulators directly target the lateral pyloric cell of the stomatogastric ganglion. Soc Neurosci Abstr 23: 2034Google Scholar
  75. Swensen AM, Marder E (2000) Multiple peptides converge to activate the same voltage-dependent current in a central pattern generating circuit. J Neurosci, in pressGoogle Scholar
  76. Swensen AM, Golowasch J, Christie AE, Coleman MJ, Nusbaum MP, Marder E (2000) GABA and responses to GABA in the stomatogastric ganglion of the crab Cancer borealis. J Exp Biol 203: 2075–2092PubMedGoogle Scholar
  77. Tierney AJ, Blanck J, Mercier J (1997) FMRFamide-like peptides in the crayfish (Procambarus clarkii) stomatogastric nervous system: distribution and effects on the pyloric motor pattern. J Exp Biol 200: 3221–3233PubMedGoogle Scholar
  78. Tierney AJ, Godleski MS, Rattananont P (1999) Serotonin-like immunoreactivity in the stomatogastric nervous systems of crayfishes from four genera. Cell Tissue Res 295: 537–551PubMedCrossRefGoogle Scholar
  79. Turrigiano GG, Seiverston AI (1989) Cholecystokinin-like peptide is a modulator of a crustacean central pattern generator. J Neurosci 9: 2486–2501PubMedGoogle Scholar
  80. Turrigiano GG, Seiverston AI (1990) A cholecystokinin-like hormone activates a feeding-related neural circuit in lobster. Nature 344: 866–868PubMedCrossRefGoogle Scholar
  81. Turrigiano GG, Seiverston AI (1991) Distribution of cholecystokinin-like immunoreactivity within the stomatogastric nervous systems of four species of decapod crustacea. J Comp Neurol 305: 164–176PubMedCrossRefGoogle Scholar
  82. Weimann JM, Marder E, Evans B, Calabrese RL (1993) The effects of SDRNFLRFamide and TNRNFLRFamide on the motor patterns of the stomatogastric ganglion of the crab Cancer borealis. J Exp Biol 181: 1–26PubMedGoogle Scholar
  83. Weimann JM, Skiebe P, Heinzel H-G, Soto C, Kopell N, Jorge-Rivera JC, Marder E (1997) Modulation of oscillator interactions in the crab stomatogastric ganglion by crustacean cardioactive peptide. J Neurosci 17: 1748–1760PubMedGoogle Scholar
  84. Wood DE, Nusbaum MP (1998) Different modulatory neurons elicit distinct circuit responses despite common cotransmitters. Soc Neurosci Abstr 24: 1892Google Scholar
  85. Zhang B, Harris-Warrick RM (1994) Multiple receptors mediate the modulatory effcts of serotonergic neurons in a small neural network. J Exp Biol 190: 55–77PubMedGoogle Scholar
  86. Zhang B, Harris-Warrick RM (1995) Calcium-dependent plateau potentials in a crab stomatogastric ganglion motor neuron. I. Calcium current and its modulation by serotonin. J Neurophysiol 74: 1929–1937PubMedGoogle Scholar
  87. Zupanc GK (1996) Peptidergic transmission: from morphological correlates to functional implications. Micron 27: 35–91PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Eve Marder
    • 1
  • Andrew M. Swensen
    • 1
  • Dawn M. Blitz
    • 2
  • Andrew E. Christie
    • 2
  • Michael P. Nusbaum
    • 2
  1. 1.Volen Center and Biology DepartmentBrandeis UniversityWalthamUSA
  2. 2.Department of Neuroscience, School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations