Skip to main content

A-Current Diversity: Differences in Channel Hardware or Second Messengers?

  • Conference paper
The Crustacean Nervous System
  • 579 Accesses

Abstract

The pyloric network generates a rhythmic motor behavior that is continuously adaptive (Harris-Warrick et al. 1992). This patterned activity is based not only on synaptic connectivity, but also on the unique firing properties of the component neurons. There are many molecular devices that could establish different firing properties between neurons, ranging from relatively static mechanisms like differential gene expression, to more dynamic methods such as changes in ion channel phosphorylation states. The strategies involved most likely reflect elementary principles of the system. Defining these strategies for the pyloric network could provide insights into its dynamic nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An W, Bowlby M, Betty M, Cao J, Ling H-P, Mendoza G, Hinson J, Mattson K, Strassle B, Trimmer J, Rhodes K (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403: 553–556

    Article  PubMed  CAS  Google Scholar 

  • Baro DJ, Coniglio LM, Cole CL, Rodriguez HE, Lubell JK, Kim MT, Harris-Warrick RM (1996a) Lobster shal: comparison with Drosophila shal and native potassium currents in identified neurons. J Neurosci 16: 1689–1701

    PubMed  CAS  Google Scholar 

  • Baro DJ, Cole CL, Harris-Warrick RM (1996b) RT-PCR analysis of shaker, shab, shaw, and shal gene expression in single neurons and glial cells. Receptors Channels 4: 149–159

    PubMed  CAS  Google Scholar 

  • Baro DJ, Levini RM, Kim MT, Willms AR, Lanning CC, Rodriguez HE, Harris-Warrick RM (1997) Quantitative single-cell-reverse transcription-PCR demonstrates that A-current magnitude varies as a linear function of shal gene expression in identified stomatogastric neurons. J Neurosci 17: 6597–6610

    PubMed  CAS  Google Scholar 

  • Baro DJ, Ayali A, French L, Scholz NL, Labenia J, Lanning CC, Graubard K, Harris-Warrick RM (2000a) Molecular underpinnings of motor pattern generation: differential targeting of shal and shaker in the pyloric motor system. J Neurosci 20: 6619–6630

    PubMed  CAS  Google Scholar 

  • Baro, D.J., Quinones, L., Lanning, CC, Harris-Warrick, R.M., and Ruiz, M. (2001) Stable differences in α-subunit gene expression cannot account for IA diversity in the components of a dynamic motor network, in press

    Google Scholar 

  • Bowlby MR, Mendoza G, Hinson J, An WF, Cao J, Wardwell-Swanson J, Mattson KI, Rhodes KJ (1999) Modulation of Kv4-family K+ channels by a novel family of neuronal calcium sensor homologs. Soc Neurosci Abstr 25: 982

    Google Scholar 

  • Chandy CK GG (1995) Voltage-gated potassium channel genes. In: North RA (ed) Handbook of receptors and channels: ligand- and voltage-gated ion channels. CRC, Boca Raton, pp 1–71

    Google Scholar 

  • Chen M-L, Hoshi T, Wu C-F (1996) Heteromultimeric interactions among K+ channel subunits from Shaker and eag families in Xenopus oocytes. Neuron 17: 535–542

    Article  PubMed  CAS  Google Scholar 

  • Connor JA (1975) Neural repetitive firing: a comparitve study of membrane properties of crustacean walking leg axons. J Neurophysiol 351: 922–932

    Google Scholar 

  • Covarrubias M, Wei A, Salkoff L, Vyas TB (1994) Elimination of rapid potassium channel inactivation by phosphorylation of the inactivation gate. Neuron 13: 1403–1412

    Article  PubMed  CAS  Google Scholar 

  • Debanne D, Guerineau NC, Gahwiler BH, Thompson SM (1997) Action-potential propagation gated by an axonal I(A)-like K+ conductance in hippocampus [published erratum appears in Nature 1997 Dec 4;390(6659): 536]. Nature 389: 286–289

    Article  PubMed  CAS  Google Scholar 

  • Derst C, Karschin A (1998) Review: evolutionary link between prokaryotic and eukaryotic K+ channels. J Exp Biol 201: 2791–2799

    CAS  Google Scholar 

  • Doliveira LC, Nawoschik SP, An WF, Bowlby MR, Trimmer JS, Rhodes KJ (1999) Effects of two novel neuronal calcium sensor homologs on surface expression of Kv4 a-subunits in COSI cells. Soc Neurosci Abstr 25: 982

    Google Scholar 

  • Drain P, Dubin AE, Aldrich RW (1994) Regulation of Shaker K+ channel inactivation gating by the cAMP-dependent protein kinase. Neuron 12: 1097–1109

    Article  PubMed  Google Scholar 

  • Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M, Lazdunski M (1998) A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. Embo J 17: 3297–3308

    Article  PubMed  CAS  Google Scholar 

  • Graubard K, Hartline DK (1991) Voltage clamp analysis of intact stomatogastric neurons. Brain Res 557: 241–254

    Article  PubMed  CAS  Google Scholar 

  • Harris-Warrick R, Marder E, Selverston A, Moulins M (eds) (1992) Cellular and synaptic properties in the crustacean stomatogastric nervous system. In: Dynamic biological networks. MIT Press, Cambridge

    Google Scholar 

  • Harris-Warrick RM, Coniglio LM, Barazangi N, Guckenheimer J, Gueron S (1995a) Dopamine modulation of transient potassium current evokes phase shifts in a central pattern generator network. J Neurosci 15: 342–358

    PubMed  CAS  Google Scholar 

  • Harris-Warrick RM, Coniglio LM, Levini RM, Gueron S, Guckenheimer J (1995b) Dopamine modulation of two subthreshold currents produces phase shifts in activity of an identified motoneuron. J Neurophysiol 74: 1404–1420

    PubMed  CAS  Google Scholar 

  • Hartline D, Graubard K (1992) Cellular and synaptic properties in the crustacean stomatogastric nervous system. In: Harris-Warrick R, Marder E, Selverston A, Moulins M (eds) Dynamic biological networks. MIT Press, Cambridge, pp 31–85

    Google Scholar 

  • Hartline DK (1979) Pattern generation in the lobster (Panulirus) stomatogastric ganglion. II Pyloric network simulation. Biol Cybern 33: 223–236

    Article  PubMed  CAS  Google Scholar 

  • Hartline DK, Gassie DV, Jones BR (1993) Effects of soma isolation on outward currents measured under voltage clamp in spiny lobster stomatogastric motor neurons. J Neurophysiol 69: 2056–2071

    PubMed  CAS  Google Scholar 

  • Hoger JH, Walter AE, Vance D, Yu L, Lester HA, Davidson N (1991) Modulation of a cloned mouse brain potassium channel. Neuron 6: 227–236

    Article  PubMed  CAS  Google Scholar 

  • Holmes TC, Fadool DA, Levitan IB (1996) Tyrosine phosphorylation of the Kvl.3 potassium channel. J Neurosci 16: 1581–1590

    PubMed  CAS  Google Scholar 

  • Huang X-Y, Morelli AD, Peralta EG (1993) Tyrosine kinase dependent supression of a potassium channel by the G protein-coupled ml muscarinic receptor. Cell 75: 1145–1156

    Article  PubMed  CAS  Google Scholar 

  • Huang X-Y, Morelli AD, Peralta EG (1994) Molecular basis of cardiac potassium channel stimulation by protein kinase A. PNAS 94: 624–628

    Article  Google Scholar 

  • Hugnot JP, Salinas M, Lesage F, Guillemare E, de Weille J, Heurteaux C, Mattei MG, Lazdunski M (1996) Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards Shab and Shaw channels. Embo J 15: 3322–3331

    PubMed  CAS  Google Scholar 

  • Jan LY, Jan NY (1997) Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci 20: 91–124

    Article  PubMed  CAS  Google Scholar 

  • Jegla T, Salkoff L (1997) A novel subunit for shal K+ channels radically alters activation and inactivation. J Neurosci 17: 32–44

    PubMed  CAS  Google Scholar 

  • Jonas EA, Kaczmarek LK (1996) Regulation of potassium channels by protein kinases. Curr Opin Neurobiol 6: 318–323

    Article  PubMed  CAS  Google Scholar 

  • Ketchum KA, Joiner WJ, Sellers AJ, Kaczmarek LK, Goldstein SA (1995) A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 376: 690–695

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Baro DJ, Lanning CC, Doshi M, Farnham J, Moskowitz HS, Peck JH, Olivera BM, Harris-Warrick RM (1997) Alternative splicing in the pore-forming region of shaker potassium channels. J Neurosci 17: 8213–8224

    PubMed  CAS  Google Scholar 

  • Kim M, Baro DJ, Lanning CC, Doshi M, Moskowitz HS, Farnham J, Harris-Warrick RM (1998) Expression of Panulirus shaker potassium channel splice variants. Receptors Channels 5: 291–304

    PubMed  CAS  Google Scholar 

  • Kindler CH, Yost CS, Gray AT (1999) Local anesthetic inhibition of baseline potassium channels with two pore domains in tandem. Anesthesiology 90: 1092–1102

    Article  PubMed  CAS  Google Scholar 

  • Kloppenburg P, Levini RM, Harris-Warrick RM (1999) Dopamine modulates two potassium currents and inhibits the intrinsic firing properties of an identified motor neuron in a central pattern generator network. J Neurophysiol 81: 29–38

    PubMed  CAS  Google Scholar 

  • Levitan IB (1994) Modulation of ion channels by protein phosphorylation and dephosphorylation. Annu Rev Physiol 56: 193–212

    Article  PubMed  CAS  Google Scholar 

  • Meyrand P, Weimann JM, Marder E (1992) Multiple axonal spike initiation zones in a motor neuron: serotonin activation. J Neurosci 12:2803–2812.

    PubMed  CAS  Google Scholar 

  • Miller JP (1980) Mechanisms underlying pattern generation in the lobster stomatogastric ganglion. University of California, San Diego

    Google Scholar 

  • Moran O, Dascal N, Lotan I (1991) Modulation of a Shaker potassium A-channel by protein kinase C activation. FEBS Lett 279: 256–260

    Article  PubMed  CAS  Google Scholar 

  • Patel AJ, Honore E, Maingret F, Lesage F, Fink M, Duprat F, Lazdunski M (1998) A mammalian two pore domain mechano-gated S-like K+ channel. Embo J 17: 4283–4290

    Article  PubMed  CAS  Google Scholar 

  • Patel AJ, Honore E, Lesage F, Fink M, Romey G, Lazdunski M (1999) Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2: 422–426

    Article  PubMed  CAS  Google Scholar 

  • Pongs O (1999) Voltage-gated potassium channels: from hyperexcitability to excitement. FEBS Lett 452: 31–35

    Article  PubMed  CAS  Google Scholar 

  • Qian Y, DeRubies D, Pfaffiinger PJ (1999) The N-terminal and C-terminal domain of voltage-dependent potassium channels are processed and may act as signaling molecules. Soc Neurosc Abstr 25: 531

    Google Scholar 

  • Raper JA (1979) Nonimpulse-mediated synaptic transmission during the generation of a cyclic motor program. Science 205: 304–306

    Article  PubMed  CAS  Google Scholar 

  • Reimann F, Ashcroft FM (1999) Inwardly rectifying potassium channels. Curr Opin Cell Biol 11:503–508

    Article  PubMed  CAS  Google Scholar 

  • Roeper J, Lorra C, Pongs O (1997) Frequency-dependent inactivation of mammalian A-type K+ channel KV1.4 regulated by Ca2+/calmodulin-dependent protein kinase. J Neurosci 17: 3379–3391

    PubMed  CAS  Google Scholar 

  • Rogero O, Hammerle B, Tejedor FJ (1997) Diverse expression and distribution of Shaker potassium channels during the development of the Drosophila nervous system. J Neurosci 17: 5108–5118

    PubMed  CAS  Google Scholar 

  • Rosenthal JJ, Vickery RG, Gilly WF (1996) Molecular identification of SqKvlA. A candidate for the delayed rectifier K channel in squid giant axon. J Gen Physiol 108: 207–219

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal JJ, Liu TI, Gilly WF (1997) A family of delayed rectifier Kvl cDNAs showing cell type-specific expression in the squid stellate ganglion/giant fiber lobe complex. J Neurosci 17: 5070–5079

    PubMed  CAS  Google Scholar 

  • Salkoff L, Jegla T (1995) Surfing the DNA databases for K+ channels nets yet more diversity. Neuron 15: 489–492

    Article  PubMed  CAS  Google Scholar 

  • Salkoff L, Baker K, Butler A, Covarrubias M, Pak MD, Wei A (1992) An essential ‘set’ of K+ channels conserved in flies, mice and humans. Trends Neurosci 15: 161–166

    Article  PubMed  CAS  Google Scholar 

  • Schulman H (1995) Protein phosphorylation in neuronal plasticity and gene expression. Curr Opin Neurobiol 5: 375–381

    Article  PubMed  CAS  Google Scholar 

  • Shi G, Nakahira K, Hammond S, Rhodes KJ, Schechter LE, Trimmer JS (1996) β-subunits promote K channel surface expression through effects early in biosynthesis. Neuron 16: 843–852

    Google Scholar 

  • Snyders DJ (1999) Structure and function of cardiac potassium channels. Cardiovasc Res 42: 377–390

    Article  PubMed  CAS  Google Scholar 

  • Stowell JN, Craig AM (1999) Axon/dendrite targeting of metabotropic glutamate receptors by their cytoplasmic carboxy-terminal domains. Neuron 22: 525–536

    Article  PubMed  CAS  Google Scholar 

  • Tang CY, Schulteis CT, Jimenez RM, Papazian DM (1998) Shaker and ether-a-go-go K+ channel subunits fail to coassemble in Xenopus oocytes. Biophys J 75: 1263–1270

    Article  PubMed  CAS  Google Scholar 

  • Tierney AJ, Harris-Warrick RM (1992) Physiological role of the transient potassium current in the pyloric circuit of the lobster stomatogastric ganglion. J Neurophysiol 67: 599–609

    PubMed  CAS  Google Scholar 

  • Trimmer JS (1999) Sorting out receptor trafficking. Neuron 22: 411–412

    Article  PubMed  CAS  Google Scholar 

  • Villarroel A, Schwarz TL (1996) Inhibition of the Kv4 (Shal) family of transient K+ currents by arachidonic acid. J Neurosci 16: 1016–1025

    PubMed  CAS  Google Scholar 

  • Wang H, Kunkel DD, Martin TM, Schwartzkroin PA, Tempel BL (1993) Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons. Nature 365: 75–79

    Article  PubMed  CAS  Google Scholar 

  • Wang ZW, Kunkel MT, Wei A, Butler A, Salkoff L (1999) Genomic organization of nematode 4TM K+ channels. Ann N Y Acad Sci 868: 286–303

    Article  PubMed  CAS  Google Scholar 

  • Wei A, Jegla T, Salkoff L (1996) Eight potassium channel families revealed by the C. elegans genome project. Neuropharmacology 35: 805–829

    Article  PubMed  CAS  Google Scholar 

  • Willms AR, Baro DJ, Harris-Warrick RM, Guckenheimer J (1999) An improved parameter estimation method for Hodgkin-Huxley models. J Computational Neuroscience 6: 145–168

    Article  CAS  Google Scholar 

  • Wilson GG, O’Neill CA, Sivaprasadarao A, Findlay JBC, Wray D (1994) Modulation by protein kinase A of a cloned rat brain potassium channel expressed in Xenopus oocytes. Pfluegers Arch 428: 186–193

    Article  CAS  Google Scholar 

  • Yang EK, Alvira M, Levitan ES, Takimoto K (1999) Association of Kv4 family channels with β subunits. Soc Neurosci Abstr 25: 983

    Google Scholar 

  • Yu W, Jia X, Li M (1996) NAB domain is essential for the subunit assembly of both α-α and α-β complexes of shaker-like potassium channels. Neuron 16: 441–453

    Article  PubMed  CAS  Google Scholar 

  • Zhong Y, Wu CF (1991) Alteration of four identified K+ currents in Drosophila muscle by mutations in eag. Science 252: 1562–1564

    Article  PubMed  CAS  Google Scholar 

  • Zhong Y, Wu CF (1993) Modulation of different K+ currents in Drosophila: a hypothetical role for the Eag subunit in multimeric K+ channels. J Neurosci 13: 4669–4679

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baro, D.J. (2002). A-Current Diversity: Differences in Channel Hardware or Second Messengers?. In: Wiese, K. (eds) The Crustacean Nervous System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04843-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04843-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08618-2

  • Online ISBN: 978-3-662-04843-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics