Skip to main content

Part of the book series: Springer Finance ((FINANCE))

  • 2255 Accesses

Abstract

In Chap. 13, we presented an approach to the modeling of defaultable term structure based on the Heath-Jarrow-Morton modeling methodology. As the underlying building blocks that served to produce a model of default-free and defaultable term structures, we have used there the dynamics of instantaneous, continuously compounded, forward interest rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

A Guide to References

Mathematical background

  • Itô, K., McKean, H.P. (1965) Diffusion Processes and Their Sample Paths. Springer-Verlag, Berlin Heidelberg New York.

    MATH  Google Scholar 

  • Dellacherie, C. (1970) Un exemple de la théorie générale des processus. In: Lecture Notes in Math. 124, Springer-Verlag, Berlin Heidelberg New York, pp. 60–70.

    Google Scholar 

  • Chou, C.-S., Meyer, P.-A. (1975) Sur la répresentation des martingales tommes intégrales stochastiques dans les processus ponctuels. In: Lecture Notes in Math. 465, Springer-Verlag, Berlin Heidelberg New York, pp. 226–236.

    Google Scholar 

  • Dellacherie, C., Meyer, P.-A. (1978a) Probabilities and potential. Hermann, Paris.

    MATH  Google Scholar 

  • Dellacherie, C., Meyer, P.-A. (1978b) A propos du travail de Yor sur les grossisse-ments des tribus. In: Lecture Notes in Math. 649, Springer-Verlag, Berlin Heidel-berg New York, pp. 69–78.

    Google Scholar 

  • Davis, M.H.A. (1976) The representation of martingales of jump processes. SIAM J. Control 14, 623–638.

    MATH  Google Scholar 

  • Elliott, R.J. (1977) Innovation projections of a jump process and local martingale. Math. Proc. Cambridge Phil. Soc. 81, 77–90.

    MATH  Google Scholar 

  • Jeulin, T., Yor, M. (1978) Grossissement d’une filtration et semi-martingales: formules explicites. In: Lecture Notes in Math. 649, Springer-Verlag, Berlin Heidelberg New York, pp. 78–97.

    Google Scholar 

  • Jacod, J. (1979) Calcul stochastique et problèmes de martingales. Lecture Notes in Math. 714. Springer-Verlag, Berlin Heidelberg New York.

    Google Scholar 

  • Mazziotto, G., Szpirglas, J. (1979) Modèle général de filtrage non linéaire et équa-tions différentielles stochastiques associées. Ann. Inst. H. Poincaré 15, 147–173.

    MathSciNet  MATH  Google Scholar 

  • Çinlar, E., Jacod, J., Protter, P., Sharpe, M.J. (1980) Semimartingales and Markov processes. Z. Wahrsch. Verw. Gebiete 54 (1980), 161–219.

    MathSciNet  MATH  Google Scholar 

  • Jeulin, T. (1980) Semi-martingales et grossissement de filtration. Lecture Notes in Math. 833, Springer-Verlag, Berlin Heidelberg New York.

    Google Scholar 

  • Aven, T. (1985) A theorem for determining the compensator of a counting process. Scand. J. Statist. 12, 69–72.

    Google Scholar 

  • Jennen, C., Lerche, H.R. (1981) First exit densities of Brownian motion through one-sided moving boundaries. Z. Wahrsch. verw. Gebiete 55, 133–148.

    Google Scholar 

  • Jacod, J., Shiryaev, A.N. (1987) Limit Theorems for Stochastic Processes. Springer-Verlag, Berlin Heidelberg New York.

    MATH  Google Scholar 

  • Shaked, M., Shanthikumar, J.G. (1987) The multivariate hazard construction. Stochastic Process. Appl. 24, 241–258.

    MathSciNet  MATH  Google Scholar 

  • Ikeda, N., Watanabe, S. (1989) Stochastic Differential Equations and Diffusion Processes. 2nd edition. North-Holland, Amsterdam.

    Google Scholar 

  • Bhattacharya, R.N., Waymire, E.C. (1990) Stochastic Processes with Applications. J. Wiley. Chichester.

    Google Scholar 

  • Protter, P. (1990) Stochastic Integration and Differential Equations. A New Approach. Springer-Verlag, Berlin Heidelberg New York.

    Google Scholar 

  • Karatzas, I., Shreve, S. (1991) Brownian Motion and Stochastic Calculus. 2“d edition. Springer-Verlag, Berlin Heidelberg New York.

    Google Scholar 

  • Revuz, D., Yor, M. (1999) Continuous Martingales and Brownian Motion. 3rd edition. Springer-Verlag, Berlin Heidelberg New York.

    Google Scholar 

  • Williams, D. (1991) Probability with Martingales. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Durbin, J. (1992) The first passage density of the Brownian motion process to a curved boundary. J. Appi. Probab. 29, 291–304.

    MathSciNet  MATH  Google Scholar 

  • Syski, R. (1992) Passage Times for Markov Chains. IOS Press, Amsterdam.

    MATH  Google Scholar 

  • Yor, M. (1997) Some Aspects of Brownian Motion. Part II: Some Recent Martingale Problems, Lectures in Mathematics. ETH Zürich. Birkhäuser, Basel.

    Google Scholar 

  • Yor, M. (2001) Exponential Functionals of Brownian Motion and Related Processes.

    Google Scholar 

  • Davis, M.H.A. (1993) Markov Models and Optimization. Chapman and Hall, London.

    MATH  Google Scholar 

  • Peng, S. (1993) Backward stochastic differential equation and its application in optimal control. Appl. Math. Optim. 27, 125–144.

    MATH  Google Scholar 

  • Artzner, P., Delbaen, F. (1995) Default risk insurance and incomplete markets. Math. Finance 5, 187–195.

    MATH  Google Scholar 

  • Krylov, N.V. (1995) Introduction to the Theory of Diffusion Processes. American Mathematical Society, Providence.

    MATH  Google Scholar 

  • Last, G., Brandt, A. (1995) Marked Point Processes on the Real Line. The Dynamic Approach. Springer-Verlag, Berlin Heidelberg New York.

    MATH  Google Scholar 

  • Borodin, A., Salminen, P. (1996) Handbook of Brownian Motion. Facts and Formulae. Birkhäuser, Basel Boston Berlin.

    MATH  Google Scholar 

  • Yin, G.G., Zhang, Q. (1997) Continuous-Time Markov Chains and Applications. A Singular Perturbation Approach. Springer-Verlag, Berlin Heidelberg New York.

    Google Scholar 

  • Oksendal, B. (1998) Stochastic Differential Equations. 5th edition. Springer-Verlag, Berlin Heidelberg New York.

    Google Scholar 

  • Gill, R.D. (1999) Applications of product-integration in survival analysis. In: Proc. Workshop on Product Integrals and Pathwise Integration, University of Aarhus.

    Google Scholar 

  • Rolski, T., Schmidli, H., Schmidt, V., Teuggels, J. (1998) Stochastic Processes for Insurance and Finance. J. Wiley, Chichester.

    Google Scholar 

  • Ma, J., Yong, J. (1999) Forward-Backward Stochastic Differential Equations and Their Applications. Springer-Verlag, Berlin Heidelberg New York.

    MATH  Google Scholar 

  • Elliott, R.J., Jeanblanc, M., Yor, M. (2000) On models of default risk. Math. Finance 10, 179–195.

    MathSciNet  MATH  Google Scholar 

  • Rogers, L.C.G., Williams, D. (2000) Diffusions, Markov Processes and Martingales. 2“d edition. Cambridge University Press.

    Google Scholar 

  • Steele, M. (2000) Stochastic Calculus and Financial Applications. Springer-Verlag, Berlin Heidelberg New York.

    Google Scholar 

Arbitrage pricing theory

  • Black, F., Scholes M. (1973) The pricing of options and corporate liabilities. J. Political Econom. 81, 637–654.

    Google Scholar 

  • Merton, R.C. (1973) Theory of rational option pricing. Bell J. Econom. Manag. Sci. 4, 141–183.

    MathSciNet  Google Scholar 

  • Harrison, J.M., Pliska, S.R. (1981) Martingales and stochastic integrals in the the-ory of continuous trading. Stochastic Process. Appl. 11, 215–260.

    Google Scholar 

  • Merton, R.C. (1990) Continuous-Time Finance. Basil Blackwell, Oxford.

    Google Scholar 

  • Duffie, D., Epstein, L. (1992) Stochastic differential utility. Econometrica 60, 353–394.

    MathSciNet  MATH  Google Scholar 

  • Cvitanié, J., Karatzas, I. (1993) Hedging contingent claims with constrained portfolios. Ann. Appl. Probab. 6, 652–681.

    Google Scholar 

  • Geman, H., ElKaroui, N., Rochet, J.C. (1995) Changes of numeraire, changes of probability measures and pricing of options. J. Appl. Probab. 32, 443–458.

    MathSciNet  MATH  Google Scholar 

  • Baxter, M., Rennie A. (1996) Financial Calculus. An Introduction to Derivative Pricing. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Duffle, D. (1996) Dynamic Asset Pricing Theory. 2d edition. Princeton University Press, Princeton.

    Google Scholar 

  • Lamberton, D., Lapeyre, B. (1996) Introduction to Stochastic Calculus Applied to Finance. Chapman and Hall, London.

    Google Scholar 

  • Neftci, S.N. (1996) An Introduction to the Mathematics of Financial Derivatives. Academic Press, New York.

    MATH  Google Scholar 

  • El Karoui, N., Quenez, M.C. (1997a) Nonlinear pricing theory and backward stochastic differential equations. In: Financial Mathematics, Bressanone, 1996, W.Runggaldier, ed., Springer-Verlag, Berlin Heidelberg New York, pp. 191–246.

    Google Scholar 

  • El Karoui, N., Quenez, M.C. (1997b) Imperfect markets and backward stochastic differential equations. In: Numerical Methods in Finance, L.C.G. Rogers, D. Ta-lay, eds., Cambridge University Press, Cambridge, pp. 181–214.

    Google Scholar 

  • Hull, J.C. (1997) Options, Futures, and Other Derivatives. 3rd edition. Prentice-Hall, Englewood Cliffs (New Jersey).

    Google Scholar 

  • Pliska, S.R. (1997) Introduction to Mathematical Finance: Discrete Time Models. Blackwell Publishers, Oxford.

    Google Scholar 

  • Musiela, M., Rutkowski, M. (1997a) Martingale Methods in Financial Modelling. Springer-Verlag, Berlin Heidelberg New York.

    MATH  Google Scholar 

  • Bingham, N.H., Kiesel, R. (1998) Risk-Neutral Valuation. Springer-Verlag, Berlin Heidelberg New York.

    MATH  Google Scholar 

  • Björk, T. (1998) Arbitrage Theory in Continuous Time. Oxford University Press, Oxford.

    Google Scholar 

  • Karatzas, I., Shreve, S. (1998) Methods of Mathematical Finance. Springer-Verlag, Berlin Heidelberg New York.

    MATH  Google Scholar 

  • Skinner, F.S. (1998) Hedging bonds subject to credit risk. J. Bank. Finance 22, 321–345.

    Google Scholar 

  • Karatzas, I., Shreve, S. (1998) Methods of Mathematical Finance. Springer-Verlag, Berlin Heidelberg New York.

    MATH  Google Scholar 

  • Elliott, R.J., Kopp, P.E. (1999) Mathematics of Financial Markets. Springer-Verlag, Berlin Heidelberg New York.

    MATH  Google Scholar 

  • Föllmer, H., Leukert, P. (1999) Quantile hedging. Finance Stochast. 3, 251–273.

    MATH  Google Scholar 

  • Mel’nikov, A.V. (1999) Financial Markets. Stochastic Analysis and the Pricing of Derivative Securities. American Mathematical Society, Providence.

    MATH  Google Scholar 

  • Hunt, P.J., Kennedy, J.E. (2000) Financial Derivatives in Theory and Practice. J. Wiley, Chichester.

    Google Scholar 

  • Jarrow, R.A., Turnbull, S.M. (2000a) Derivative Securities. 2“d edition. Southwestern Publishers, Cincinnati (Ohio).

    Google Scholar 

  • Schweizer, M. (2001) A guided tour through quadratic hedging approaches. In: Option Pricing, Interest Rates and Risk Management, E. Jouini, J. Cvitanié, M. Musiela, eds., Cambridge University Press, Cambridge, pp. 538–574.

    Google Scholar 

Term structure modeling

  • Vasicek, O. (1977) An equilibrium characterisation of the term structure. J. Finan. Econom. 5, 177–188.

    Google Scholar 

  • Cox, J.C., Ingersoll, J.E., Ross, S.A. (1985a) An intertemporal general equilibrium model of asset prices. Econometrica 53, 363–384.

    MathSciNet  MATH  Google Scholar 

  • Cox, J.C., Ingersoll, J.E., Ross, S.A. (1985b) A theory of the term structure of interest rates. Econometrica 53, 385–407.

    MathSciNet  Google Scholar 

  • Jamshidian, F. (1989) An exact bond option pricing formula. J. Finance 44, 205–209.

    Google Scholar 

  • Jamshidian, F. (1997) LIBOR and swap market models and measures. Finance Stochast. 1, 293–330.

    MATH  Google Scholar 

  • Heath, D.C., Jarrow, R.A., Morton, A. (1990) Bond pricing and the term structure of interest rates: A discrete time approximation. J. Finan. Quant. Anal. 25, 419–440.

    Google Scholar 

  • Heath, D.C., Jarrow, R.A., Morton, A. (1992) Bond pricing and the term structure of interest rates: A new methodology for contingent claim valuation. Econometrica 60, 77–105.

    MATH  Google Scholar 

  • Brace, A., Gatarek, D., Musiela, M. (1997) The market model of interest rate dynamics. Math. Finance 7, 127–154.

    MathSciNet  MATH  Google Scholar 

  • Miltersen, K., Sandmann, K., Sondermann, D. (1997) Closed form solutions for term structure derivatives with log-normal interest rates. J. Finance 52, 409–430.

    Google Scholar 

  • Musiela, M., Rutkowski, M. (1997a) Martingale Methods in Financial Modelling. Springer-Verlag, Berlin Heidelberg New York.

    MATH  Google Scholar 

  • Musiela, M., Rutkowski, M. (1997b) Continuous-time term structure models: forward measure approach. Finance Stochast. 1, 261–291.

    MATH  Google Scholar 

  • Rutkowski, M. (1999) Models of forward Libor and swap rates. Appl. Math. Finance 6, 29–60.

    MATH  Google Scholar 

  • Rutkowski, M. (2001) Modelling of forward Libor and swap rates. In: Option Pricing, Interest Rates and Risk Management, E. Jouini, J. Cvitanié, M. Musiela, eds., Cambridge University Press, Cambridge, pp. 336–395.

    Google Scholar 

  • Schlögl, E. (1999) A multicurrency extension of the lognormal interest rate market model. Working paper, University of Technology, Sydney.

    Google Scholar 

  • Hunt, P.J., Kennedy, J.E. (2000) Financial Derivatives in Theory and Practice. J. Wiley, Chichester.

    Google Scholar 

  • Hunt, P.J., Kennedy, J.E., Pelsser, A. (2000) Markov-functional interest rate models. Finance Stochast. 4, 391–408.

    MathSciNet  MATH  Google Scholar 

  • Jarrow, R.A., Turnbull, S.M. (2000a) Derivative Securities. 2“d edition. Southwestern Publishers, Cincinnati (Ohio).

    Google Scholar 

  • Rebonato, R. (2000) On the simultaneous calibration of multifactor lognormal interest rate models to Black volatilities and to the correlation matrix. J. Comput. Finance 2 (4), 5–27.

    Google Scholar 

  • Brigo, D., Mercurio, F. (2001) Interest Rate Models: Theory and Practice. Springer-Verlag, Berlin Heidelberg New York.

    MATH  Google Scholar 

  • Martellini, L., Priaulet, P. (2001) Fixed-Income Securities. Dynamic Methods for Interest Rate Risk Pricing and Hedging. J. Wiley, Chichester.

    Google Scholar 

Credit risk

  • Litzenberger, R. (1992) Swaps: Plain and fanciful. J. Finance 47, 831–850.

    Google Scholar 

  • Das, S. (1998a) Credit derivatives — instruments. In: Credit Derivatives: Trading and Management of Credit and Default Risk, S.Das, ed., J. Wiley, Singapore, pp. 7–77.

    Google Scholar 

  • Das, S. (1998b) Valuation and pricing of credit derivatives. In: Credit Derivatives: Trading and Management of Credit and Default Risk, S.Das, ed., J. Wiley, Singapore, pp. 173–231.

    Google Scholar 

  • Caouette, J.B., Altman, E.I., Narayanan, P. (1998) Managing Credit Risk: The Next Great Financial Challenge. J. Wiley, Chichester.

    Google Scholar 

  • Tavakoli, J.M. (1998) Credit Derivatives: A Guide to Instruments and Applications. J. Wiley, Chichester

    Google Scholar 

  • Francis, J.C., Frost, J.A., Whittaker, J.G. (1999) Handbook of Credit Derivatives. Irwin/McGraw-Hill, New York.

    Google Scholar 

  • Nelsen, R. (1999) An Introduction to Copulas. Springer-Verlag, Berlin Heidelberg New York.

    MATH  Google Scholar 

  • Saunders, A. (1999) Credit Risk Measurements: New Approaches to Value at Risk and Other Paradigms. J. Wiley, Chichester.

    Google Scholar 

  • Arvanitis, A., Laurent, J.-P. (1999) On the edge of completeness. Risk, October.

    Google Scholar 

  • Arvanitis, A. (2000) Getting the pricing right. Risk 13 (9), 115–119.

    Google Scholar 

  • Cossin, D., Pirotte, H. (2000) Advanced Credit Risk Analysis. J. Wiley, Chichester.

    Google Scholar 

  • Duffie, D., Singleton, K.J. (2003) Credit Risk. Pricing, Measurement and Management. Princeton University Press, Princeton.

    Google Scholar 

Structural approach

  • Merton, R.C. (1974) On the pricing of corporate debt: The risk structure of interest rates. J. Finance 29, 449–470.

    Google Scholar 

  • Black, F., Cox, J.C. (1976) Valuing corporate securities: Some effects of bond indenture provisions. J. Finance 31, 351–367.

    Google Scholar 

  • Geske, R. (1977) The valuation of corporate liabilities as compound options. J. Finan. Quant. Anal. 12, 541–552.

    Google Scholar 

  • Brennan, M.J., Schwartz, E.S. (1977) Convertible bonds: Valuation and optimal strategies for call and conversion. J. Finance 32, 1699–1715.

    Google Scholar 

  • Brennan, M.J., Schwartz, E.S. (1978) Corporate income taxes, valuation and the problem of optimal capital structure. J. Business 51, 103–114.

    Google Scholar 

  • Brennan, M.J., Schwartz, E.S. (1980) Analyzing convertible bonds. J. Finan. Quant. Anal. 15, 907–929.

    Google Scholar 

  • Pitts, C., Selby, M. (1983) The pricing of corporate debt: A further note. J. Finance 38, 1311–1313.

    Google Scholar 

  • Vasicek, O. (1984) Credit valuation. Working paper, KMV Corporation.

    Google Scholar 

  • Chance, D. (1990) Default risk and the duration of zero-coupon bonds. J. Finance 45. 265–274.

    Google Scholar 

  • Rendleman, R.J. (1992) How risks are shared in interest rate swaps. J. Finan. Services Res. 5–34.

    Google Scholar 

  • Kim, I.J., Ramaswamy, K., Sundaresan, S. (1993a) The valuation of corporate fixed income securities. Working paper, Wharton School, University of Pennsylvania.

    Google Scholar 

  • Nielsen, T.N., Sad-Requejo, J., Santa-Clara, P. (1993) Default risk and interest rate risk: The terni structure of default spreads. Working paper, INSEAD.

    Google Scholar 

  • Hull, J.C., White, A. (1995) The impact of default risk on the prices of options and other derivative securities. J. Bank. Finance 19, 299–322.

    Google Scholar 

  • Longstaff, F.A., Schwartz, E.S. (1995) A simple approach to valuing risky fixed and floating rate debt. J. Finance 50, 789–819.

    Google Scholar 

  • Klein, P. (1996) Pricing Black-Scholes options with correlated credit risk. J. Bank. Finance 20, 1211–1129

    Google Scholar 

  • Zhou, C. (1996) A jump-diffusion approach to modeling credit risk and valuing defaultable securities. Working paper, Federal Reserve Board, Washington

    Google Scholar 

  • Briys, E., de Varenne, F. (1997) Valuing risky fixed rate debt: An extension. J. Finan. Quant. Anal. 32, 239–248.

    Google Scholar 

  • Pierides, Y.A. (1997) The pricing of credit risk derivatives. J. Econom. Dynamics Control 21, 1579–1611.

    MathSciNet  MATH  Google Scholar 

  • Rich, D., Leipus, R. (1997) An option-based approach to analyzing financial con-tracts with multiple indenture provisions. Adv. Futures Options Res. 9, 1–36.

    Google Scholar 

  • Cathcart, L., El-Jahel, L. (1998) Valuation of defaultable bonds. J. Fixed Income 8 (1), 65–78.

    Google Scholar 

  • Crouhy, M., Galai, D., Mark, R. (1998) Credit risk revisited. Risk–Credit Risk Supplement, March, 40–44.

    Google Scholar 

  • Delianedis, G., Geske, R. (1998) Credit risk and risk neutral default probabilities: Information about rating migrations and defaults. Forthcoming.

    Google Scholar 

  • Ericsson, J., Reneby, J. (1998) A framework for valuing corporate securities. Appl. Math. Finance 5, 143–163.

    Google Scholar 

  • Ericsson, J., Reneby, J. (1999) A note on contingent claims pricing with non-traded assets. Working paper, Université Catholique de Louvain and Stockholm School of Economics.

    Google Scholar 

  • Li, H. (1998) Pricing swaps with default risk. Rev. Derivatives Res. 2, 231–250.

    Google Scholar 

  • Barone-Adesi, G., Colwell, D.B. (1999) Valuing risky debt with constant elasticity of variance effects. Working paper, University of Alberta and UNSW.

    Google Scholar 

  • Shirakawa, H. (1999) Evaluation of yield spread for credit risk. Adv. Math. Econom. 1, 83–97.

    MathSciNet  Google Scholar 

  • Wang, D.F. (1999a) Pricing defaultable debt: Some exact results. Internat. J. Theor. Appl. Finance 2, 95–99.

    MATH  Google Scholar 

  • Buffet, E. (2000) Credit risk: The structural approach revisited. Proceedings of the Third Seminar on Stochastic Analysis, Random Fields and Applications, Ascona 1999, R. Dalang, M. Dozzi, M. Russo, eds., Birkhäuser, Basel Boston Berlin.

    Google Scholar 

  • Ericsson, J. (2000) Asset substitution, debt pricing, optimal leverage and maturity. Finance 21 (2), 39–70.

    Google Scholar 

  • Collin-Dufresne, P., Goldstein, R.S. (2001) Do credit spread reflect stationary leverage ratios? J. Finance 56, 1929–1957.

    Google Scholar 

  • Klein, P., Inglis, M. (2001) Pricing vulnerable European options when the option’s payoff can increase the risk of financial distress. J. Bank. Finance 25, 993–1012.

    Google Scholar 

  • Yu, H., Kwok, Y.K. (2002) Contingent claim approach for analyzing the credit risk of defaultable currency swaps. A MS/IP Stud. in Adv. Math. 26, pp. 79–92.

    Google Scholar 

  • Eom, Y.H., Helwege, J., Huang, J.-Z. (2003) Structural models of corporate bond pricing: An empirical analysis. Forthcoming in Rev. Finan. Studies.

    Google Scholar 

Structural approach with strategic behavior

  • Leland, H.E. (1994) Corporate debt value, bond covenants, and optimal capital structure. J. Finance 49, 1213–1252.

    Google Scholar 

  • Anderson, R., Sundaresan, S. (1996) Design and valuation of debt contracts. Rev. Finan. Stud. 9, 37–68.

    Google Scholar 

  • Anderson, R., Sundaresan, S., Tychon, P. (1996) Strategic analysis of contingent claims. European Econ. Rev. 40, 871–881.

    Google Scholar 

  • Leland, H.E., Toft, K. (1996) Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads. J. Finance 51, 987–1019.

    Google Scholar 

  • Fan, H., Sundaresan, S. (1997) Debt valuation, strategic debt service and optimal dividend policy. Working paper, Columbia University.

    Google Scholar 

  • Mella-Barral, P., Perraudin, W. (1997) Strategic debt service. J. Finance 52, 531–556.

    Google Scholar 

  • Ericsson, J., Reneby, J. (1999) A note on contingent claims pricing with non-traded assets. Working paper, Université Catholique de Louvain and Stockholm School of Economics.

    Google Scholar 

  • Mella-Barral, P., Tychon, P. (1999) Default risk in asset pricing. Finance 20 (1).

    Google Scholar 

  • Anderson, R., Sundaresan, S. (2000) A comparative study of structural models of corporate bond yields: An exploratory investigation. J. Bank. Finance 24, 255–269.

    Google Scholar 

  • Anderson, R., Pan, Y., Sundaresan, S. (2000) Corporate bond yield spreads and the term structure. Finance 21 (2), 15–37.

    Google Scholar 

  • Sarkar, S. (2001) Probability of call and likelihood of the call feature in a corporate bond. J. Bank. Finance 25, 505–533.

    Google Scholar 

Reduced-form approach

  • Pye, G. (1974) Gauging the default premium. Finan. Analysts J. 30 (1), 49–52

    Google Scholar 

  • Ramaswamy, K., Sundaresan, S.M. (1986) The valuation of floating-rate instruments, theory and evidence. J. Finan. Econom. 17, 251–272.

    Google Scholar 

  • Litterman, R., Iben, T. (1991) Corporate bond valuation and the term structure of credit spreads. J. Portfolio Management 17 (3), 52–64.

    Google Scholar 

  • Artzner, P., Delbaen, F. (1995) Default risk insurance and incomplete markets. Math. Finance 5, 187–195.

    Google Scholar 

  • Hull, J.C., White, A. (1995) The impact of default risk on the prices of options and other derivative securities. J. Bank. Finance 19, 299–322.

    Google Scholar 

  • Jarrow, R.A., Madan, D.B. (1995) Option pricing using the term structure of interest rates to hedge systematic discontinuities in asset returns. Math. Finance 5, 311–336.

    MathSciNet  MATH  Google Scholar 

  • Das, S.R., Tufano, P. (1996) Pricing credit-sensitive debt when interest rates, credit ratings, and credit spreads are stochastic. J. Finan. Engrg 5 (2), 161–198.

    Google Scholar 

  • Duffie, D., Huang, M. (1996) Swap rates and credit quality. J. Finance 51, 921–949.

    Google Scholar 

  • Hughston, L.P. (1996) Pricing of credit derivatives. Financial Derivatives and Risk Management 5, 11–16.

    Google Scholar 

  • Hughston, L.P. (1997) Pricing Models for Credit Derivatives. Lecture notes, Merrill Lynch, London.

    Google Scholar 

  • Hughston, L.P., Turnbull, S. (2000) Credit derivatives made simple. Risk 13 (10), 36–43.

    Google Scholar 

  • Schönbucher, P.J. (1996) The term structure of defaultable bond prices. Working paper, University of Bonn.

    Google Scholar 

  • Schönbucher, P.J. (1998a) Term structure modelling of defaultable bonds. Rev. Derivatives Res. 2, 161–192.

    Google Scholar 

  • Schönbucher, P.J. (1998b) Pricing credit risk derivatives. Working paper, University of Bonn.

    Google Scholar 

  • Duffle, D., Singleton, K.J. (1994) Econometric modeling of term structures of defaultable bonds. Working paper, Stanford University.

    Google Scholar 

  • Duffie, D., Singleton, K.J. (1997) An econometric model of the term structure of interest-rate swap yields. J. Finance 52, 1287–1321.

    Google Scholar 

  • Duffle, D., Singleton, K.J. (1999) Modeling term structures of defaultable bonds. Rev. Finan. Stud. 12, 687–720.

    Google Scholar 

  • Lando, D. (1997) Modelling bonds and derivatives with credit risk. In: Mathematics of Derivative Securities, M. Dempster, S. Pliska, eds., Cambridge University Press, Cambridge, pp. 369–393.

    Google Scholar 

  • Monkkonen, H. (1997) Modeling Default Risk: Theory and Empirical Evidence. Ph.D. dissertation, Queen’s University.

    Google Scholar 

  • Lando, D. (1998) On Cox processes and credit-risky securities. Rev. Derivatives Res. 2, 99–120.

    Google Scholar 

  • Lotz, C. (1998) Locally minimizing the credit risk. Working paper, University of Bonn.

    Google Scholar 

  • Lotz, C. (1999) Optimal shortfall hedging of credit risk. Working paper, University of Bonn.

    Google Scholar 

  • Schlögl, L. (1998) An exposition of intensity-based models of securities and derivatives with default risk. Working paper, University of Bonn.

    Google Scholar 

  • Wong, D. (1998) A unifying credit model. Working paper, Research Advisory Services, Capital Markes Group, Scotia Capital Markets.

    Google Scholar 

  • Collin-Dufresne, P., Hugonnier, J.-N. (1999) On the pricing and hedging of contingent claims in the presence of extraneous risks. Working paper, Carnegie Mellon University.

    Google Scholar 

  • Kusuoka, S. (1999) A remark on default risk models. Adv. Math. Econom. 1, 69–82.

    MathSciNet  Google Scholar 

  • Maksymiuk, R., Gytarek, D. (1999) Applying HJM to credit risk. Risk 12 (5), 67–68.

    Google Scholar 

  • Pugachevsky, D. (1999) Generalizing with HJM. Risk 12 (8), 103–105.

    Google Scholar 

  • Blanchet-Scalliet, C., Jeanblanc, M. (2000) Hazard rate for credit risk and hedging defaultable contingent claims. Forthcoming.

    Google Scholar 

  • Elliott, R.J., Jeanblanc, M., Yor, M. (2000) On models of default risk. Math. Finance 10, 179–195.

    MathSciNet  MATH  Google Scholar 

  • Greenfield, Y. (2000) Hedging of Credit Risk Embedded in Derivative Transactions. Ph.D. dissertation, Carnegie Mellon University.

    Google Scholar 

  • Jarrow, R.A., Turnbull, S.M. (2000b) The intersection of market and credit risk. J. Bank. Finance 24, 271–299.

    Google Scholar 

  • Jeanblanc, M., Rutkowski, M. (2000a) Modelling of default risk: An overview. In: Mathematical Finance: Theory and Practice, Higher Education Press, Beijing, pp. 171–269.

    Google Scholar 

  • Jeanblanc, M., Rutkowski, M. (2000b) Modelling of default risk: Mathematical tools. Working paper, Université d’Évry and Warsaw University of Technology.

    Google Scholar 

  • Kijima, M. (2000) Valuation of a credit swap of the basket type. Rev. Derivatives Res. 4, 81–97.

    Google Scholar 

  • Kijima, M., Muromachi, Y. (2000) Credit events and the valuation credit derivatives of basket type. Rev. Derivatives Res. 4, 55–79.

    Google Scholar 

  • Laurent, J.-P. (2000) Default swap and credit spread options. Working paper, BNP Paribas, London.

    Google Scholar 

  • Lotz, C., Schlögl, L. (2000) Default risk in a market model. J. Bank. Finance 24, 301–327.

    Google Scholar 

  • Bélanger, A., Shreve, S.E., Wong, D. (2001) A unified model for credit derivatives. Forthcoming in Math. Finance.

    Google Scholar 

  • Collin-Dufresne, P., Goldstein, R.S. (2001) Do credit spread reflect stationary leverage ratios? J. Finance 56, 1929–1957.

    Google Scholar 

  • Duffle, D., Gârleanu, N. (2001) Risk and the valuation of collateralized debt obligations. Finan. Analysts J. 57 (1), 41–59.

    Google Scholar 

  • Hübner, G. (2001) The analytic pricing of asymmetric defaultable swaps. J. Bank. Finance 25, 295–316.

    Google Scholar 

  • Jarrow, R.A., Yu, F. (2001) Counterparty risk and the pricing of defaultable secu-rities. J. Finance 56, 1765–1799.

    Google Scholar 

Ratings-based approach

  • Das, S.R., Tufano, P. (1996) Pricing credit-sensitive debt when interest rates, credit ratings, and credit spreads are stochastic. J. Finan. Engrg 5 (2), 161–198.

    Google Scholar 

  • Jarrow, R.A., Lando, D., Turnbull, S.M. (1997) A Markov model for the term structure of credit risk spreads. Rev. Finan. Stud. 10, 481–523.

    Google Scholar 

  • Nakazato, D. (1997) Gaussian term structure model with credit rating classes. Working paper, Industrial Bank of Japan.

    Google Scholar 

  • Duffle, D. (1998a) First-to-default valuation. Working paper, Stanford University.

    Google Scholar 

  • Arvanitis, A., Gregory, J., Laurent, J.-P. (1998) Building models for credit spreads. J. Derivatives 6 (3), 27–43.

    Google Scholar 

  • Kijima, M., Komoribayashi, K. (1998) A Markov chain model for valuing credit risk derivatives. J. Derivatives 6, Fall, 97–108.

    Google Scholar 

  • Thomas, L.C., Allen, D.E., Morkel-Kingsbury, N. (1998) A hidden Markov chain model for the term structure of bond credit risk spreads. Working paper.

    Google Scholar 

  • Tielecki, T.R., Rutkowski, M. (1999) Defaultable term structure: Conditionally Markov approach. Forthcoming in IEEE Trans. Automatic Control.

    Google Scholar 

  • Bielecki, T.R., Rutkowski, M. (2000a) HJM with multiples. Risk 13 (4), 95–97.

    Google Scholar 

  • Bielecki, T.R., Rutkowski, M. (2000b) Multiple ratings model of defaultable term structure. Math. Finance 10, 125–139.

    MathSciNet  MATH  Google Scholar 

  • Lando, D. (2000a) Some elements of rating-based credit risk modeling. In: Advanced Fixed-Income Valuation Tools, N. Jegadeesh, B. Tuckman, eds., J. Wiley, Chichester, pp. 193–215.

    Google Scholar 

  • Schönbucher, P.J. (2000a) Credit Risk Modelling and Credit Derivatives. Ph.D. dissertation, University of Bonn.

    Google Scholar 

  • Wei, J.Z. (2000) A multi-factor, Markov chain model for credit migrations and credit spreads. Working paper, University of Toronto.

    Google Scholar 

  • Crouhy, M., Galai, D., Mark, R. (2001) Prototype risk rating system. J. Bank. Finance 25, 47–95.

    Google Scholar 

  • Eberlein, E. (2001) Application of generalized hyperbolic Lévy motions to finance. Working paper.

    Google Scholar 

  • Israel, R.B., Rosenthal, J.S., Wei, J.Z. (2001) Finding generators for Markov chains via empirical transition matrices, with applications to credit ratings. Math. Finance 11, 245–265.

    MathSciNet  MATH  Google Scholar 

  • Krahnen, J.P., Weber, M. (2001) Generally accepted rating principles: A primer. J. Bank. Finance 25, 3–23.

    Google Scholar 

  • Lando, D., Skodeberg, T. (2002) Analyzing rating transitions and rating drift with continuous observations. J. Bank. Finance 26, 423–444.

    Google Scholar 

Hybrid approach

  • Crouhy, M., Galai, D., Mark, R. (1998) Credit risk revisited. Risk–Credit Risk Supplement, March, 40–44.

    Google Scholar 

  • Madan, D.B., Unal, H. (1998) Pricing the risk of default. Rev. Derivatives Res. 2, 121–160.

    Google Scholar 

  • Madan, D.B., Unal, H. (2000) A two-factor hazard-rate model for pricing risky debt and the term structure of credit spreads. J. Finan. Quant. Anal. 35, 43–65.

    Google Scholar 

  • Mong, D. (1998) A unifying credit model. Working paper, Research Advisory Services, Capital Markes Group, Scotia Capital Markets.

    Google Scholar 

  • Davydov, D., Linetsky, V., Lotz, C. (1999) The hazard-rate approach to pricing risky debt: Two analytically tractable examples. Working paper.

    Google Scholar 

  • Bélanger, A., Shreve, S.E., Wong, D. (2001) A unified model for credit derivatives. Forthcoming in Math. Finance.

    Google Scholar 

  • Duffle, D., Gârleanu, N. (2001) Risk and the valuation of collateralized debt obligations. Finan. Analysts J. 57 (1), 41–59.

    Google Scholar 

Modeling of credit spreads

  • Das, S.R., Tufano, P. (1996) Pricing credit-sensitive debt when interest rates, credit ratings, and credit spreads are stochastic. J. Finan. Engrg 5 (2), 161–198.

    Google Scholar 

  • Nielsen, S.S., Ronn, E.I. (1997) The valuation of default risk in corporate bonds and interest rate swaps. Adv. Futures Options Res. 9, 175–196.

    Google Scholar 

  • Zheng, C.K. (2000) Understanding the default-implied volatility for credit spreads. J. Derivatives 7 (4), 67–76.

    Google Scholar 

  • Brunel, V. (2001) Pricing credit derivatives with uncertain default probabilities. Working paper, HSBC CCF.

    Google Scholar 

Dependent defaults

  • Lucas, D.J. (1995) Default correlations and credit analysis. J. Fixed Income 4 (4), 76–87.

    Google Scholar 

  • Gersbach, H., Lipponer, A. (1997a) The correlation effect. Working paper, Univer-sity of Heidelberg.

    Google Scholar 

  • Gersbach, H., Lipponer, A. (1997b) Default correlations, macroeconomic risk and credit portfolio management. Working paper, University of Heidelberg.

    Google Scholar 

  • Zhou, C. (2001) An analysis of default correlations and multiple defaults. Rev. Finan. Stud. 14, 555–576.

    Google Scholar 

  • Duffle, D. (1998a) First-to-default valuation. Working paper, Stanford University.

    Google Scholar 

  • Duffie, D., Singleton, K.J. (1998b) Simulating correlated defaults. Working paper, Stanford University.

    Google Scholar 

  • Davis, M.H.A., Lo, V. (1999) Modelling default correlation in bond portfolios. Working paper, Tokyo-Mitsubishi International.

    Google Scholar 

  • Davis, M.H.A., Lo, V. (2001) Infectious defaults. Quantitative Finance 1, 382–386

    Google Scholar 

  • Jarrow, R.A., Yu, F. (2001) Counterparty risk and the pricing of defaultable secu-rities. J. Finance 56, 1765–1799.

    Google Scholar 

  • Kusuoka, S. (1999) A remark on default risk models. Adv. Math. Econom. 1, 69–82.

    MathSciNet  Google Scholar 

  • Wang, S.S. (1999b) Aggregation of correlated risk portfolios: Models and algorithms. Working paper.

    Google Scholar 

  • Li, D.X. (1999b) The valuation of the ith-to-default basket credit derivatives. Working paper, RiskMetrics Group.

    Google Scholar 

  • Li, D.X. (2000) On default correlation: A copula function approach. J. Fixed Income 9 (4), 43–54.

    Google Scholar 

  • Erlenmaier, U., Gersbach, H. (2000) Default probabilities and default correlations. Working paper, University of Heidelberg.

    Google Scholar 

  • Frey, R., McNeil, A.J. (2000) Modelling dependent defaults. Working paper, Uni-versity of Zurich and ETHZ.

    Google Scholar 

  • Kijima, M. (2000) Valuation of a credit swap of the basket type. Rev. Derivatives Res. 4, 81–97.

    Google Scholar 

  • Kijima, M., Muromachi, Y. (2000) Credit events and the valuation credit derivatives of basket type. Rev. Derivatives Res. 4, 55–79.

    Google Scholar 

  • Lando, D. (2000b) A continuous-time Markov model of the term structure of credit risk spread. Working paper, Cornell University.

    Google Scholar 

  • Lindskog, F. (2000) Modelling Dependence with Copulas and Applications to Risk Management. Master thesis, Swiss Federal Institute of Technology.

    Google Scholar 

  • Nyfeler, M.A. (2000) Modeling dependencies in credit risk management. Diploma thesis, ETHZ.

    Google Scholar 

  • Bielecki, T.R., Rutkowski, M. (2001b) Martingale approach to basket credit derivatives. Working paper, Northeastern Illinois University and UNSW.

    Google Scholar 

  • Bielecki, T.R., Rutkowski, M. (2002) Intensity-based valuation of basket credit derivatives. In: Mathematical Finance, J. Yong, ed., World Scientific, Singapore, pp. 12–27.

    Google Scholar 

  • Bielecki, T.R., Rutkowski, M. (2003) Dependent defaults and credit migrations. Appl. Math. 30, 121–145.

    MathSciNet  MATH  Google Scholar 

  • Embrechts, P., McNeal, A.J., Straumann, D. (2002) Correlation and dependence in risk management: Properties and pitfalls. In: Risk Management: Value at Risk and Beyond, M.A.H. Dempster, ed., Cambridge University Press, Cambridge, pp. 129–144.

    Google Scholar 

  • Embrechts, P., Lindskog, F., McNeal, A.J. (2003) Modelling dependence with copulas and applications to risk management. In: Handbook of Heavy Tailed Distributions in Finance, S. Rachev, ed., Elsevier, pp. 329–384

    Google Scholar 

Liquidity risk

  • Amihud, Y., Mendelson, H. (1991) Liquidity, maturity, and yields on U.S. Treasury securities. J. Finance 46, 1411–1425.

    Google Scholar 

  • Boudoukh, J., Whitelaw, R.F. (1991) The benchmark effect in the Japanese government bond market. J. Fixed Income 1 (3), 52–59.

    Google Scholar 

  • Longstaff, F.A. (1995) How much can marketability affect security values. J. Fi-nance 50, 1767–1774.

    Google Scholar 

  • Longstaff, F.A. (2001) Optimal portfolio choice and the valuation of illiquid securities. Rev. Finan. Stud. 14, 407–431.

    Google Scholar 

  • Bangia, A., Diebold, F.X., Schuermann, T., Stroughair, J.D. (1999) Modeling liquidity risk, with implications for traditional market risk measurement and management. Working paper, University of Pennsylvania.

    Google Scholar 

  • Ericsson, J., Renault, O. (2000) Liquidity and credit risk. Working paper, McGill University and Université Catholique de Louvain.

    Google Scholar 

Econometric studies and implementations

  • Johnson, R.E. (1967) Term structure of corporate bond yields as a function of risk of default. J. Finance 22, 313–345.

    Google Scholar 

  • Fons, J.S. (1987) The default premium and corporate bond experience. J. Finance 42, 81–97.

    Google Scholar 

  • Altman, E.I. (1989) Measuring corporate bond mortality and performance. J. Finance 44, 909–922.

    Google Scholar 

  • Sarig, O., Warga, A. (1989) Some empirical estimates of the risk structure of interest rates. J. Finance 46, 1351–1360.

    Google Scholar 

  • Sun, T., Sundaresan. S., Wang, C. (1993) Interest rate swaps: An empirical investigation. J. Finan. Econom. 34, 77–99.

    Google Scholar 

  • Duffle, D., Singleton, K.J. (1994) Econometric modeling of term structures of defaultable bonds. Working paper, Stanford University.

    Google Scholar 

  • Duffie, D., Singleton, K.J. (1997) An econometric model of the term structure of interest-rate swap yields. J. Finance 52, 1287–1321.

    Google Scholar 

  • Duffle, D., Singleton, K.J. (1999) Modeling term structures of defaultable bonds. Rev. Finan. Stud. 12, 687–720.

    Google Scholar 

  • Fons, J.S. (1994) Using default rates to model the term structure of credit risk. Finan. Analysts J. 50 (5), 25–32.

    Google Scholar 

  • Altman, E.I., Bencivenga, J.C. (1995) A yield premium model for the high-yield debt market. Finan. Analysts J. 51 (5), 49–56.

    Google Scholar 

  • Duffee, G. (1996) On measuring credit risks of derivative instruments. J. Bank. Finance 20, 805–833.

    Google Scholar 

  • Fridson, M.S., Jônsson, J.G. (1995) Spread versus Treasuries and the riskiness of high-yield bonds. J. Fixed Income 5 (3), 79–88.

    Google Scholar 

  • Foss, G.W. (1995) Quantifying risk in the corporate bond markets. Finan. Analysts J. 51 (2), 29–34.

    Google Scholar 

  • Altman, E.I., Kishore, V.M. (1996) Almost everything you wanted to know about recoveries on defaulted bonds. Finan. Analysts J. 52 (6), 57–64.

    Google Scholar 

  • Uhrig, M. (1996) An empirical examination of the Longstaff-Schwartz bond option valuation model. J. Derivatives 4, 41–54.

    Google Scholar 

  • Carty, L.V. (1997) Moody’s ratings migration and credit quality correlations, 1920–1996. Moody’s Investors Service.

    Google Scholar 

  • Lehrbass, F. (1997) Defaulters get intense. Risk–Credit Risk Supplement, July, 56–59.

    Google Scholar 

  • Monkkonen, H. (1997) Modeling Default Risk: Theory and Empirical Evidence. Ph.D. dissertation, Queen’s University.

    Google Scholar 

  • Wei, D.G., Guo, D. (1997) Pricing risky debt: An empirical comparison of the Longstaff and Schwartz, and Merton models. J. Fixed Income 7 (2), 8–28.

    Google Scholar 

  • Wilson, T. (1997a) Portfolio credit risk. I and II Risk 10(9,10), 111–117, 56–61.

    Google Scholar 

  • Altman, E.I, Saunders, A. (1998) Credit risk measurements: Developments over the last 20 years. J. Bank. Finance 21, 1721–1742.

    Google Scholar 

  • Delianedis, G., Geske, R. (1998) Credit risk and risk neutral default probabilities: Information about rating migrations and defaults. Forthcoming.

    Google Scholar 

  • Duffee, G. (1998) The relation between Treasury yields and corporate bond yield spreads. J. Finance 53, 2225–2242.

    Google Scholar 

  • Duffee, G. (1999) Estimating the price of default. Rev. Finan. Stud. 12, 197–226.

    Google Scholar 

  • Schwartz, T. (1998) Estimating the term structures of corporate debt. Rev. Derivatives Res. 2, 193–230.

    Google Scholar 

  • Schweizer, M. (2001) A guided tour through quadratic hedging approaches. In:

    Google Scholar 

  • Kiesel, R., Perraudin, W., Taylor, A. (1999) The structure of credit risk. Working paper, Birbeck College.

    Google Scholar 

  • Kiesel, R., Perraudin, W., Taylor, A. (2002) Credit and interest rate risk. In: Risk Management: Value at Risk and Beyond, M.A.H. Dempster, ed., Cambridge University Press, Cambridge, pp. 129–144.

    Google Scholar 

  • Taurén, M. (1999) A comparison of bond pricing models in the pricing of credit risk. Working paper, Indiana University.

    Google Scholar 

  • Altman, E.I., Suggit, H. (2000) Default rates in the syndicated bank loan market: A mortality analysis. J. Bank. Finance 24, 229–253.

    Google Scholar 

  • Christiansen, C. (2000) Credit spreads and the term structure of interest rates. Intern. Rev. Finan. Anal. 11, 279–295.

    Google Scholar 

  • Dai, Q., Singleton, K. (2000) Specification analysis of affine term structure models. J. Finance 55, 1943–1978.

    Google Scholar 

  • Das, S.R., Sundaram, R.K. (2000) A discrete-time approach to arbitrage-free pricing of credit derivatives. Management Science 46 (1), 46–62.

    MATH  Google Scholar 

  • Finger, C.C. (2000) A comparison of stochastic default rate models. Working paper, RiskMetrics Group.

    Google Scholar 

  • Kavvathas, D. (2000) Estimating credit rating transition probabilities for corporate bonds. Working paper, University of Chicago.

    Google Scholar 

  • Liu, J., Longstaff, F.A., Mandell, R.E. (2000) The market price of credit risk: An empirical analysis of interest rate swap spreads. Working paper, UCLA.

    Google Scholar 

  • Rachev, S.. Schwartz, E., Khindanova, I. (2000) Stable modeling of credit risk. Working paper, UCLA.

    Google Scholar 

  • Bakshi, G., Madan, D.B., Zhang, F. (2001) Investigating the sources of default risk: Lessons from empirically evaluating credit risk models. Working paper.

    Google Scholar 

  • Carey, M., Hrycay, M. (2001) Parametrizing credit risk models with rating data. J. Bank. Finance 25, 197–270.

    Google Scholar 

  • Collin-Dufresne, P., Goldstein, R.S. (2001) Do credit spread reflect stationary leverage ratios? J. Finance 56, 1929–1957.

    Google Scholar 

  • Collin-Dufresne, P., Goldstein, R.S., Martin, J.S. (2001) The determinants of credit spread changes. J. Finance 56, 2177–2207.

    Google Scholar 

  • Shumway, T. (2001) Forecasting bankruptcy more accurately: A simple hazard model. J. Business 74, 101–124.

    Google Scholar 

  • Lando, D., Skodeberg, T. (2002) Analyzing rating transitions and rating drift with continuous observations. J. Bank. Finance 26, 423–444.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bielecki, T.R., Rutkowski, M. (2004). Modeling of Market Rates. In: Credit Risk: Modeling, Valuation and Hedging. Springer Finance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04821-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04821-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08707-3

  • Online ISBN: 978-3-662-04821-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics