Skip to main content

A Truly New Approach for Tissue Engineering: The LOEX Self-Assembly Technique

  • Conference paper
Stem Cell Transplantation and Tissue Engineering

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 35))

Abstract

Tissue engineering has created several original and new avenues in the biomedical sciences. There is ongoing progress, but the tissue-engineering field is currently at a crossroads in its evolution; the validity of this technique is well established. Thus, new clinical applications must appear rapidly, within a few years, so that it will have a true impact on patient care. The self-assembly approach of the Laboratoire d’Organogénèse Expérimentale (LOEX) should be at the forefront.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott WM, Vignati JJ (1995) Prosthetic grafts: when are they a reasonable alternative? Semin Vasc Surg 8: 236–245

    PubMed  CAS  Google Scholar 

  • Allaire E, Guettier C, Bruneval P, Plissonnier D, Michel JB (1994) Cell-free arterial grafts: morphologic characteristics of aortic isografts, allografts, and xenografts in rats. J Vasc Surg 19: 446–456

    Article  PubMed  CAS  Google Scholar 

  • Auger FA (1988) The role of cultured autologous human epithelium in large burn wound treatment. Transplantation\Implantation Today 5: 21–26

    Google Scholar 

  • Auger FA, Lopez Valle CA, Guignard R, Tremblay N, Noël B, Goulet F, Germain L (1995) Skin equivalent produced with human collagen. In vitro Cell Dev Biol Anim 31: 432–439

    Google Scholar 

  • Auger FA, Rouabhia M, Goulet F, Berthod F, Moulin V, Germain L (1998) Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels: clinical and fundamental applications. Med Biol Eng Comput 36: 801–812

    Article  PubMed  CAS  Google Scholar 

  • Badylak SF, Lantz GC, Coffey A, Geddes LA (1989) Small intestinal submu- cosa as a large diameter vascular graft in the dog. J Surg Res 47: 74–80

    Article  PubMed  CAS  Google Scholar 

  • Badylak SF, Kropp B, McPherson T, Liang H, Snyder PW (1998) Small intestinal submucosa: a rapidly resorbed bioscaffold for augmentation cystoplasty in a dog model. Tissue Eng 4: 379–387

    Article  PubMed  CAS  Google Scholar 

  • Bell E, Ivarsson B, Merrill C (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA 76: 1274–1278

    Article  PubMed  CAS  Google Scholar 

  • Berthod F, Hayek D, Damour O, Collombel C (1993) Collagen synthesis by human fibroblasts cultured within a collagen sponge. Biomaterials 14: 749–754

    Article  PubMed  CAS  Google Scholar 

  • Berthod F, Germain L, Guignard R, Lethias C, Garrone R, Damour O, van der Rest M, Auger FA (1997) Differential expression of collagens XII and XIV in skin and in reconstructed skin. J Invest Dermatol 108: 737–742

    Article  PubMed  CAS  Google Scholar 

  • Black AF, Berthod F, L’Heureux N, Germain L, Auger FA (1998) In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J 12: 1331–1340

    PubMed  CAS  Google Scholar 

  • Boyce ST, Christianson DJ, Hansbrough JF (1988) Structure of a collagen-GAG dermal skin substitute optimized for cultured human epidermal keratinocytes. J Biomed Mater Res 22: 939–957

    Article  PubMed  CAS  Google Scholar 

  • Boyce ST, Michel S, Reichert U, Shroot B, Schmidt R (1990) Reconstructed skin from cultured human keratinocytes and fibroblasts on a collagen-glycosaminoglycan biopolymer substrate. Skin Pharmacol 3: 136–143

    Article  PubMed  CAS  Google Scholar 

  • Brewster DC, Rutherford RB (1995) Prosthetic grafts in vacsular surgery. Saunders, Philadelphia, pp 492–521

    Google Scholar 

  • Charara J, Beaudoin G, Fortin C, Guidoin R, Roy PE, Marble A, Schmitter R, Paynter R (1989) In vivo biostability of four types of arterial grafts with impervious walls: their haemodynamic and pathological characteristics. J Biomed Eng 11: 416–428

    Article  PubMed  CAS  Google Scholar 

  • Christen T, Bochaton-Piallat ML, Neuville P, Rensen S, Redard M, van Eys G, Gabbiani G (1999) Cultured porcine coronary artery smooth muscle cells. A new model with advanced differentiation. Circ Res 85: 99–107

    Google Scholar 

  • Contard P, Bartel RL, Jacobs L 2d, Perlish JS, MacDonald ED 2d, Handler L, Cone D, Fleischmajer R (1993) Culturing keratinocytes and fibroblasts in a three-dimensional mesh results in epidermal differentiation and formation of a basal lamina-anchoring zone. J Invest Dermatol 100: 35–39

    Article  PubMed  CAS  Google Scholar 

  • Cooper ML, Hansbrough JF, Spielvogel RL, Cohen R, Bartel RL, Naughton G (1991) In vivo optimization of a living dermal substitute employing cultured human fibroblasts on a biodegradable polyglycolic acid or polyglactin mesh. Biomaterials 12: 243–248

    Article  PubMed  CAS  Google Scholar 

  • Damour O, Braye F, Foyatier JL, Fabreguette A, Rousselle P, Vissac S, Petit P (1997) Cultured autologous epidermis for massive burn wounds: 15 years of practice. In: Rouabhia M (ed) Skin substitute production by tissue engineering: clinical and fundamental applications. Landes, Austin, pp 23–45

    Google Scholar 

  • Dardik H (1989) Modified human umbilical vein allograft. In: Brutherford (ed) Vascular surgery. Saunders, Philadelphia, pp 474–480

    Google Scholar 

  • Duplan-Perrat F, Damour O, Montrocher C, Peyrol S, Grenier G, Jacob M-P, Braye F (2000) Keratinocytes influence the maturation and organization of the elastin network in a skin equivalent. J Invest Dermatol 114: 365–370

    Article  PubMed  CAS  Google Scholar 

  • Gallico GG III, O’Connor NE, Compton CC, Kehinde O, Green H (1984) Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med 331: 448–451

    Article  Google Scholar 

  • Germain L, Rouabhia M, Guignard R, Carrier L, Bouvard V, Auger FA (1993) Improvement of human keratinocyte isolation and culture using thermolysin. Burns 2: 99–104

    Article  Google Scholar 

  • Germain L, Auger FA, Grandbois E, Guignard R, Giasson M, Boisjoly H, Guérin SL (1999) Reconstructed human cornea produced in vitro by tissue engineering. Pathobiology 67: 140–147

    Article  PubMed  CAS  Google Scholar 

  • Germain L, Carrier P, Auger FA, Salesse C, Guérin S (2000) Can we produce a human corneal equivalent by tissue engineering? Prog Retinal Eye Res 19 (5): 497–527

    Article  CAS  Google Scholar 

  • Goulet F, Germain L, Caron C, Rancourt D, Normand A, Auger FA (1997a) Tissue-engineered ligament. In: Yahia LH (ed) Ligaments and ligamentoplasties. Springer, Berlin Heidelberg New York, pp 367–377

    Chapter  Google Scholar 

  • Goulet F, Germain L, Rancourt D, Caron C, Normand A, Auger FA (1997b) Tendons and ligaments. In: Lanza R, Langer R, Chick WL (eds) Principles of tissue engineering. Landes/Academic, Austin, Texas, pp 633–644

    Google Scholar 

  • Heimbach D, Luterman A, Burke J, Cram A, Herndon D, Hunt J, Jordan M, McManus W, Solem L, Warden G, Zawacki B (1988) Artificial dermis for major burns. A multi-center randomized clinical trial. Ann Surg 208: 313–320

    Google Scholar 

  • Hirai J, Matsuda T (1996) Venous reconstruction using hybrid vascular tissue composed of vascular cells and collagen: tissue regeneration process. Cell Transplant 5: 93–105

    Article  PubMed  CAS  Google Scholar 

  • Huynh T, Abraham G, Murray J, Brockbank K, Hagen PO, Sullivan S (1999) Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nat Biotechnol 17: 1083–1086

    Article  PubMed  CAS  Google Scholar 

  • Isogai N, Landis W, Kim TH, Gerstenfeld LC, Upton J, Vacanti JP (1999) Formation of phalanges and small joints by tissue-engineering. J Bone Joint Surg Am 81: 306–316

    Article  PubMed  CAS  Google Scholar 

  • Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52: 2745–2756

    Google Scholar 

  • Jaksic T, Burke JF (1987) The use of “artificial skin” for burns. Annu Rev Med 38: 107–117

    Article  PubMed  CAS  Google Scholar 

  • Laplante AF, Germain L, Auger FA, Moulin V (2001) Mechanisms of wound reepithelialization: hints from a tissue-engineered reconstructed skin to long-standing questions. FASEB J (in press)

    Google Scholar 

  • L’Heureux N, Germain L, Labbé R, Auger FA (1993) In vitro construction of human vessel from cultured vascular cells: a morphologic study. J Vasc Surg 17:499–509

    Google Scholar 

  • L’Heureux N, Pâquet S, Labbé R, Germain L, Auger FA (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12: 47–56

    PubMed  Google Scholar 

  • L’Heureux N, Stoclet JC, Auger FA, Lagaud GJ-L, Germain L, Andriantsitohaina R (2001) A human tissue-engineered vascular media: a new model for pharmacological studies of contractile responses. FASEB J 15: 515–524

    Article  PubMed  Google Scholar 

  • Lin VS, Lee MC, O’Neal S, McKean J, Sung KL (1999) Ligament tissue engineering using synthetic biodegradable fiber scaffolds. Tissue Eng 5: 443–452

    Article  PubMed  CAS  Google Scholar 

  • López-Valle CA, Auger FA, Rompré P, Bouvard V, Germain L (1992) Peripheral anchorage of dermal equivalents. Br J Dermatol 127: 365–371

    Article  PubMed  Google Scholar 

  • Michel M, Germain L, Bélanger PM, Auger FA (1995) Functional evaluation of anchored skin equivalent cultured in vitro: percutaneous absorption studies and lipid analysis. Pharm Res 12: 455–458

    Article  PubMed  CAS  Google Scholar 

  • Michel M, L’Heureux N, Pouliot R, Xu W, Auger FA, Germain L (1999) Characterization of a new tissue-engineered human skin equivalent with hair. In vitro Cell Dev Biol Anim 35. 318–326

    Google Scholar 

  • Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284: 489–493

    Article  PubMed  CAS  Google Scholar 

  • O’Connor NE, Mulliken JB, Banks-Schlegel S, Kehinde O, Green H (1981) Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet 1: 75–78

    Article  Google Scholar 

  • O’Donnell TF, Mackey W, McCullough JL, Maxwell SL, Farber SP, Deterling RA, Callow AD (1984) Correlation of operative findings with angiographic and noninvasive hemodynamic factors associated with failure of polytetrafluoroethylene grafts. J Vasc Surg 1: 136–148

    PubMed  Google Scholar 

  • Paquette JS, Goulet F, Boulet LP, Laviolette M, Tremblay N, Chakir J, Germain L, Auger FA (1998) Three-dimensional production of bronchi in vitro. Can Respir J 5: 43

    PubMed  CAS  Google Scholar 

  • Peter SJ, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1998) Polymer concepts in tissue engineering. J Biomed Mater Res 43: 422–427

    Article  PubMed  CAS  Google Scholar 

  • Pruniéras M, Régnier M, Woodley D (1983) Methods of cultivation of kerati-nocytes with an air-liquid interface. J Invest Dermatol 81: 28s - 33s

    Article  PubMed  Google Scholar 

  • Ross R (1971) The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol 50: 172–186

    Article  PubMed  CAS  Google Scholar 

  • Sayers RD, Raptis S, Berce M, Miller JH (1998) Long-term results of femorotibial bypass with vein or polytetrafluoroethylene. Br J Surg 85: 934–938

    Article  PubMed  CAS  Google Scholar 

  • Shinoka T, Shum-Tim D, Ma PX, Tanel RE, Langer R, Vacanti JP, Mayer JE Jr (1997) Tissue-engineered heart valve leaflets: does cell origin affect outcome? Circulation 96:II102—I1107

    Google Scholar 

  • Stanke F, Riebel D, Carmine S, Cracowski JL, Caron F, Magne JL, Egelhoffer H, Bessard G, Devillier P (1998) Functional assessment of human femoral arteries after cryopreservation. J Vasc Surg 28: 273–283

    Article  PubMed  CAS  Google Scholar 

  • Stephen M, Loewenthal, J, Little JM, May J, Sheil AG (1977) Autogenous veins and velour Dacron in femoropopliteal arterial bypass. Surgery 81: 314–318

    PubMed  CAS  Google Scholar 

  • Thyberg J, Hedin U, Sjolund M, Palmberg L, Bottger BA (1990) Regulation of differentiated properties and proliferation of arterial smooth muscle cells. Arteriosclerosis 10: 966–990

    Article  PubMed  CAS  Google Scholar 

  • Tranquillo RT, Girton TS, Bromberek BA, Triebes TG, Mooradian DL (1996) Magnetically orientated tissue-equivalent tubes: application to a circumferentially orientated media-equivalent. Biomaterials 17: 349–357

    Article  PubMed  CAS  Google Scholar 

  • Veith FJ, Gupta SK, Ascer E, White-Flores S, Samson RH, Scher LA, Towne JB, Bernhard VM, Bonier P, Flinn WR, Astelford P, Yao JST, Bergan II (1986) Six-year prospective multicenter randomized comparison of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions. J Vasc Surg 3: 104–114

    PubMed  CAS  Google Scholar 

  • Weinberg CB, Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231: 397–400

    Article  PubMed  CAS  Google Scholar 

  • Yannas IV, Burke JF, Orgill DP, Skrabut EM (1982) Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science 215: 174–176

    Article  PubMed  CAS  Google Scholar 

  • Ziegler T, Alexander RW, Nerem RM (1995) An endothelial cell-smooth muscle cell co-culture model for use in the investigation of flow effects on vascular biology. Ann Biomed Eng 23: 216–225

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Auger, F.A., Rémy-Zolghadri, M., Grenier, G., Germain, L. (2002). A Truly New Approach for Tissue Engineering: The LOEX Self-Assembly Technique. In: Haverich, A., Graf, H. (eds) Stem Cell Transplantation and Tissue Engineering. Ernst Schering Research Foundation Workshop, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04816-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04816-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04818-4

  • Online ISBN: 978-3-662-04816-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics