Skip to main content

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 35))

  • 96 Accesses

Abstract

Cardiovascular disease and particularly ischemic disorders of the heart are the leading causes of death in Western countries. In 1996 the total mortality in Germany was 882,843; 9.7% died of acute myocardial infarction and 10.7% of congestive heart failure, which is mainly related to ischemic cardiomyopathy occurring after myocardial infarction. Depending on the severity of the disease (New York Heart Association classification) current treatment strategies include bypass operation and percutaneous transluminal coronary angioplasty (PTCA) and stunt implantation. Progressive heart failure related to ischemic cardiomyopathies can ultimately only be treated by transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anversa P, Fitzpatrick D, Argani S, Capasso M (1991) Myocyte mitotic division in the aging mammalian rat heart. Circ Res 69: 1 159–1164

    Google Scholar 

  • Biben C, Hadchouel J, Tajbakhsh S, Buckingham M (1996) Developmental and tissue-specific regulation of the murine cardiac actin gene in vivo depends on distinct skeletal and cardiac muscle-specific enhancer elements in addition to the proximal promoter. Dev Biol 173: 200–212

    Article  PubMed  CAS  Google Scholar 

  • Brennan KJ, Hardeman EC (1993) Quantitative analysis of the human alpha-skeletal actin gene in transgenic mice. J Biol Chem 268: 719–725

    PubMed  CAS  Google Scholar 

  • Choi J, Costa ML, Mermelstein CS, Chagas C, Holtzer S, Holtzer H (1990) MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc Natl Acad Sci USA 87: 7988–7992

    Article  PubMed  CAS  Google Scholar 

  • Delcarpio JB, Lanson NA, Field LJ, Claycomb WC (1991) Morphological characterization of cardiomyocytes isolated from a transplantable cardiac tumor derived from transgenic mouse atria (AT-1 cells). Circ Res 69: 1591–1600

    Article  PubMed  CAS  Google Scholar 

  • Dexter TM, Allen TD, Lajtha LG (1976) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91: 335–344

    Article  Google Scholar 

  • Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryo! Exp Morphol 87: 27–45

    CAS  Google Scholar 

  • Drab M, Haller H, Bychkov R, Erdmann B, Lindschau C, Haase H, Morano I, Luft FC, Wobus AM (1997) From totipotent embryonic stem cells to spontaneously contracting smooth muscle cells: a retinoic acid and db-cAMP in vitro differentiation model. Faseb J 11: 905–915

    PubMed  CAS  Google Scholar 

  • Franz WM, Breves D, Klingel K, Brem G, Hofschneider PH., Kandolf R (1993) Heart-specific targeting of firefly luciferase by the myosin light chain-2 promoter and developmental regulation in transgenic mice. Circ Res 73: 629–638

    Article  PubMed  CAS  Google Scholar 

  • Gopal-Srivastava R, Haynes JH, Piatigorsky J (1995) Regulation of the murine aB-crystallin/small heat shock protein gene in cardiac muscle. Mol Cell Biol 15: 7081–7090

    PubMed  CAS  Google Scholar 

  • Johnson JE, Wold BJ, Hauschka SD (1989) Muscle creatine kinase sequence elements regulating skeletal and cardiac muscle expression in transgenic mice. Mol Cell Biol 9: 3393–3399

    PubMed  CAS  Google Scholar 

  • Kato Y, Rideout III WM, Hilton K, Barton SC, Tsunoda Y, Surani MA (1999) Developmental potential of mouse primordial germ cells. Development 126: 1823–1832

    PubMed  CAS  Google Scholar 

  • Katz EB, Steinhelper ME, Delcarpio JB, Daud AI, Claycomb WC, Field LJ (1992) Cardiomyocyte proliferation in mice expressing alpha-cardiac myosin heavy chain-SV40 T-antigen transgenes. Am J Physiol 262: H1867 — H1876

    PubMed  CAS  Google Scholar 

  • Kelly R, Alosno S, Tajbakhsh S, Cossu G, Buckingham M (1995) Myosin light chain 3F regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic mice. J Cell Biol 129: 383–396

    Article  PubMed  CAS  Google Scholar 

  • Kimura S, Abe K, Suzuki M, Ogawa M, Yoshioka K, Kaname T, Miike T, Yamamura K (1997) A 900 bp genomic region from the mouse dystrophin promoter directs lacZ reporter expression only to the right heart of trans-genic mice. Dev Growth Differ 39: 257–265

    Article  PubMed  CAS  Google Scholar 

  • Klug MG, Soonpaa MH, Koh GY, Field LJ (1996) Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intra-cardiac grafts. J Clin Invest 98: 216–224

    Article  PubMed  CAS  Google Scholar 

  • Koh GY, Kim SJ, Klug MG, Park K, Soonpaa MH, Field LJ (1996) Targeted expression of transforming growth factor (31 in intercardiac grafts promotes vascular endothelial DNA synthesis. J Clin Invest 95: 114–121

    Article  Google Scholar 

  • Leor J, Patterson M, Quinones MJ, Kedes LH, Kloner RA (1996) Transplantation of fetal myocardial tissue into the infarcted myocardium of rat. A potential method for repair of infarcted myocardium? Circulation 94:II332–1I336

    Google Scholar 

  • Lewis AL, Xia Y, Datta SK, McMillin J, Kellems RE (1999) Combinatorial interactions regulate cardiac expression of the murine adenylosuccinate synthetase 1 gene. J Biol Chem 274: 14188–14197

    Article  PubMed  CAS  Google Scholar 

  • Li RK, Jia ZQ, Weisel RD. Mickle DA, Zhang J, Mohabeer MK, Rao V, Ivanov J (1996) Cardiomyocyte transplantation improves heart function. Ann Thorac Surg 62 (3): 654–660

    Article  PubMed  CAS  Google Scholar 

  • Li RK, Mickle DA, Weisel RD, Mohabeer MK, Zhang J, Rao V, Li G, Merante F, Jia ZQ (1997) Natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation. 9619 Suppl1:II-179–186

    Google Scholar 

  • Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J. Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103: 697–705

    CAS  Google Scholar 

  • Maltsev VA, Ji GJ, Wobus AM, Fleischmann BK, Hescheler J (1999) Establishment of beta-adrenergic modulation of L-type Ca2+ current in the early stages of cardiomyocyte development. Circ Res 84: 136–145

    Article  PubMed  CAS  Google Scholar 

  • McTiernan CF, Lemster BIT, Frye CS, Johns DC, Feldman AM (1999) Characterization of proximal transcription regulatory elements in the rat phospholamban promoter. J Mol Cell Cardiol 31: 2137–2153

    Article  PubMed  CAS  Google Scholar 

  • Müller M, Fleischmann BK, Selbert S, Ji GJ, Endl E, Middeler G, Muller OJ, Schlenke P, Frese S, Wobus AM, Hescheler J, Katus HA, Franz WM (2000)

    Google Scholar 

  • Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J 14(15):2540–2548

    Google Scholar 

  • Paradis K, Langford G, Long Z, Heneine W, Sandstrom P, Switzer WM, Chapman LE, Lockey C, Onions D, Otto E (1999) Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. Science 285: 1236–1241

    Article  PubMed  CAS  Google Scholar 

  • Parsons WJ, Richardson JA, Graves KH, Williams RS, Moreadith RW (1993) Gradients of transgene expression directed by the human myoglobin promoter in the developing mouse heart. Proc Natl Acad Sci USA 90: 1726–1730

    Article  PubMed  CAS  Google Scholar 

  • Patience C, Takeuchi Y, Weiss A (1997) Infection of human cells by endogenous retrovirus of pigs. Nat Med 3: 282–286

    Article  PubMed  CAS  Google Scholar 

  • Reinecke H, Zhang M, Bartosek T, Murry CE (1999) Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100: 193–202

    Article  PubMed  CAS  Google Scholar 

  • Reinecke H, MacDonald GH, Hauschka SD, Murry CE (2000) Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. J Cell Biol 149 (3): 731–740

    Article  PubMed  CAS  Google Scholar 

  • Reubinoff BE, Pera MF, Fong C-Y, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotech 18: 399–404

    Article  CAS  Google Scholar 

  • Rindt H, Gulick J, Knotts S, Neumann J, Robbins J (1993) In vivo analysis of the murine beta-myosin heavy chain gene promoter. J Biol Chem 268: 5332–5338

    PubMed  CAS  Google Scholar 

  • Rivkees SA, Chen M, Kulkarni J, Browne J, Zhao Z (1999) Characterization of the murine Al adenosine receptor promoter, potent regulation by GATA4 and Nkx2.5. J Biol Chem 274: 14204–14209

    Article  PubMed  CAS  Google Scholar 

  • Rohwedel J, Maltsev V, Bober E, Arnold HH, Hescheler J, Wobus AM (1994) Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev Biol 164: 87–101

    Article  PubMed  CAS  Google Scholar 

  • Sandrin MS, McKenzie IFC (1999) Recent advances in xenotransplantation. Cur Opin Immunol 11: 527–531

    Article  CAS  Google Scholar 

  • Seidman CE, Schmidt EV, Seidman JG (1991) cis-Dominance of rat atrial natriuretic factor gene regulatory sequences in transgenic mice. Can J Physiol Pharmacol 69: 1486–1492

    Google Scholar 

  • Sen A, Dunnmon P, Henderson SA., Gerard RD, Chien KR (1988) Terminally differentiated neonatal rat myocardial cells proliferate and maintain specific differentiated functions following expression of SV40 large T antigen. J.Biol Chem 263: 19132–19136

    PubMed  CAS  Google Scholar 

  • Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD (1998). Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sei USA 95: 13726–13731

    Article  CAS  Google Scholar 

  • Soonpaa MH, Field LJ (1998) Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 83: 15–26

    Article  PubMed  CAS  Google Scholar 

  • Strubing C, Ahnert-Hilger G, Shan J, Wiedenmann B, Hescheler J, Wobus AM (1995) Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech Dev 53: 275–287

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam A, Jones WK, Gulick J, Wert S, Neumann J, Robbins J (1991) Tissue-specific regulation of the a-myosin heavy chain gene promoter in transgenic mice. J Biol Chem 266: 24613–24620

    PubMed  CAS  Google Scholar 

  • Taylor DA, Atkins BZ, Hungspreugs P, Jones TR, Reedy MC, Hutcheson KA, Glower DD, Kraus WE (1998) Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation. Nat Med 4: 929–933

    Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147

    Article  PubMed  CAS  Google Scholar 

  • Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, Jia ZQ (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100:11247—II256

    Google Scholar 

  • Vogel G (1999) Breakthrough of the year: capturing the promise of youth. Science 286: 2238–2239

    Article  PubMed  CAS  Google Scholar 

  • Wartenberg M, Gunther J, Hescheler J, Sauer H (1998) The embryoid body as a novel in vitro assay system for antiangiogenic agents. Lab Invest 78: 1301–1314

    PubMed  CAS  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable off- spring derived from fetal and adult mammalian cells. Nature 385: 810–813

    Article  PubMed  CAS  Google Scholar 

  • Wobus AM, Wallukat G, Hescheler J (1991) Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergie agents and Ca2+ channel blockers. Differentiation 48: 173–182

    Article  PubMed  CAS  Google Scholar 

  • Wobus AM, Kaomei G, Shan J, Wellner MC, Rohwedel J, Ji G, Fleischmann B, Katus HA, Hescheler J, Franz WM (1997) Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J Mol Cell Cardiol 29: 1525–1539

    Article  PubMed  CAS  Google Scholar 

  • Wolf E, Zakhartchenko V, Brem G (1998) Nuclear transfer in mammals: recent developments and future perspectives. J Biotechnol 65: 99–110

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, Lyons GE, Juhasz O. Joya JE, Hardeman EC, Wade R (1995) Developmental regulation of troponin I isoform genes in striated muscles of trans-genic mice. Dev Biol 169: 487–503

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Selbert, S., Franz, WM. (2002). Myocardial Tissue Engineering. In: Haverich, A., Graf, H. (eds) Stem Cell Transplantation and Tissue Engineering. Ernst Schering Research Foundation Workshop, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04816-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04816-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04818-4

  • Online ISBN: 978-3-662-04816-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics